E - ISSN: 2722 - 0141 DOI: 10.33751/injast.v5i2.8513 Carbon dioxide (CO₂) emissions and mitigation efforts based on

P - ISSN: 2722 - 0133

ANNISA CHOERINITA KUSUMA WARDHANI^{1,2,*}, RITA RETNOWATI, YOSSA ISTIADI¹

Bogor City's green open space

¹Graduate School of Environmental Management, Pakuan University, Jl. Pakuan No. 1, Tegallega, Bogor 16129, Indonesia ²Sekretariat Badan Penyuluhan dan Pengembangan SDM, Kementerian Lingkungan Hidup dan Kehutanan RI, Gd. Manggala Wanabhakti, Jl. Gatot Subroto, Senayan, Jakarta 10270, indonesia

*Corresponding author: annisachoerinita@gmail.com

Submitted 23 July 2024; Accepted 13 November 2024

ABSTRACT

One of the risks associated with climate change is carbon dioxide (CO₃) emission, which can negatively affect human health and the ecosystem. The CO₂ emission can lead to a decline in urban area quality that surpasses the environment's carrying capacity. This research aimed to investigate the relationship between CO₂ Emissions from Transportation (X₁), Household (X₂), and Business Sector (X₂) with the CO₂ reduction of green open space (Y). The hypothesis is that there is a negative correlation between CO₂ emissions from transportation, households, and businesses and CO₂ reduction from green open spaces. A quantitative research design was adopted using the Slovin formula and cluster random sampling. The Normality and Homogeneity Tests are used to analyze research data. The study yielded the following results: first, the coefficient of determination (r^2) = 0.003 indicates a relationship between CO_2 emissions from transportation with CO_2 reduction from green open space, with a 0.3% contribution. The second finding is that there is a 0.1% contribution from CO₂ reduction from green open space to the CO_0 emissions of households, as indicated by the coefficient of determination (r^2) = 0.001. Third, a correlation of 0.1% between CO₂ reduction from green open space and CO₂ emissions from the Business Sector is indicated by the coefficient of determination (r^2) = 0.001. Thus, using the regression equation Y = 2320.432 - 0.16X₁ - 0.25 X₂ - 0.007 X₃, there is an overall significant relationship between CO₂ emissions from transportation, CO₂ emissions from households, and CO₂ emissions from the business sector with the reduction of CO₂ from green open space.

ABSTRAK

Salah satu risiko yang terkait dengan perubahan iklim adalah emisi karbon dioksida (CO₃), yang dapat berdampak negatif terhadap kesehatan manusia dan ekosistem. Hal ini dapat mengakibatkan penurunan kualitas kawasan perkotaan hingga melampaui daya dukung lingkungan. Penelitian ini bertujuan untuk mengetahui hubungan Emisi CO_a dari Transportasi (X₁), Rumah Tangga (X₂), dan Dunia Usaha (X₃) dengan penurunan CO₂ pada Ruang Terbuka Hijau (Y). Hipotesisnya adalah terdapat korelasi negatif antara emisi CO₂ dari transportasi, rumah tangga, dan dunia usaha dengan penurunan CO₂ dari ruang terbuka hijau. Dengan menggunakan rumus Slovin dan cluster random sampling, desain penelitian yang digunakan adalah kuantitatif. Uji Normalitas dan Homogenitas digunakan untuk menganalisis data penelitian. Penelitian ini menghasilkan hasil sebagai berikut: pertama, koefisien determinasi (r²) = 0,003 menunjukkan adanya hubungan antara emisi CO_2 dari transportasi dengan penurunan CO₂ dari ruang terbuka hijau, dengan kontribusi sebesar 0,3%. Temuan kedua, terdapat kontribusi penurunan CO_2 dari ruang terbuka hijau terhadap emisi CO_2 rumah tangga sebesar 0,1% yang ditunjukkan dengan koefisien determinasi (r^2) = 0,001. Ketiga, korelasi sebesar 0,1% antara penurunan CO_2 dari RTH dengan emisi CO_2 dari Dunia Usaha ditunjukkan dengan koefisien determinasi (r²) = 0,001. Dengan demikian, dengan menggunakan persamaan regresi Y = 2320.432 - 0.16X₁ - 0,25 X₂ - 0,007 X₃, secara keseluruhan terdapat hubungan yang signifikan antara emisi CO₂ dari transportasi, emisi CO₂ dari rumah tangga, dan emisi CO₂ dari dunia usaha dengan penurunan emisi CO₂ dari ruang terbuka hijau.

Keywords: Bogor city, carbon dioxide emission, green open space

INTRODUCTION

Climate Change is currently an issue that is quite important as a cause of climate anomalies in a region. For Indonesia, climate change poses a formidable challenge for its people, as it is the world's fourth most populous nation and the biggest archipelagic country (Priatna & Monk, 2023). The problem of global warming occurs throughout the world, including Indonesia. As the temperature increases by 1oC on the earth, it will impact ecosystems and species of flora and fauna, resulting in hydrometeorological disasters.

Greenhouse effect gases come from energy use such as the use of fossil fuels for industry and motorized vehicles, changes in forest land use to other areas, the livestock sector is produced from the decomposition of livestock manure, the agricultural industry produces CO₂ through the use of fertilizers, decomposing agrarian residues, and burning agricultural areas. Carbon dioxide gas (CO₉) is the largest contributor to emissions, at around 50%,

92 © Pakuan University compared to other greenhouse gases (Nugroho & Fazzry, 2016).

With increasing development and population growth today, in the next 100 years, CO_2 concentration levels in the atmosphere will increase twice compared to the industrial era, around 580 ppm (Akhadi, 2009). Based on these estimates, it will cause problems that impact the environment, and the earth's temperature will continue to increase yearly. CO_2 emissions can come from motorized vehicles, households, and the business sectors.

Household ${\rm CO}_2$ emissions come from energy consumption using electronic devices (television, computer, refrigerator), cooking (LPG), and other activities. Total energy consumption in 2018 in the household sector is around 16%, and it is projected that in 2025, there will be an increase in the number of households by 70.6 million. The dominant energy used is electricity in 2018 by 60%, then the industrial, commercial, and other sectors. The dominant energy can be caused by the increasing level of people's income, which encourages the use of electronic goods (DEN, 2019).

Bogor has approximately 144.75 ha of urban forests, namely CIFOR's Dramaga Research Forest and the Bogor Botanical Gardens. In addition, several forms of green open space can absorb CO₂ (Nugraha et al., 2022). The results of the study by Dewi et al. (2024) show that the CO₂ absorption capacity of trees and green open space on one campus in Bogor, with an area of 35,000 m², is 282,784.89 kg per year. However, the area of green open space in Bogor City has been decreased from time to time (Dahlan 2008). Therefore, to reduce carbon dioxide emissions from households, transportation, and businesses in urban areas, one alternative is to optimize and maximize green open spaces, so research is needed. As a strategic urban area, Bogor City is expected to become an environmentally friendly, beautiful and comfortable city for residents and visitors from outside the city. Absorption of CO₂ through green open space in urban areas is one climate action that can contributed by the community and local government, which aligns with Sustainable Development Goal 13, "Climate Action", but it should also be synergized with the efforts from other sectors (Priatna & Khan, 2024).

METHODS

Data Collection and Analysis Techniques

In this study, the data analyzed included calculations of CO_2 emissions, divided into four factors: the size of green open space CO_2 reduction and analysis related to the calculation of emissions from transportation, emissions from households, and emissions from the businesses sector. The method used in this research is quantitative.

CO, Reduction of green open space

To determine the amount of CO_2 reduction, we measured the CO_2 absorption by plants. Based on the results of previous studies, it is known that the ability of each plant to absorb CO_2 is different. (Dahlan, 2007). The absorption capacity of CO_2 by plants in open space can be seen in Table 1.

Table 1. CO₂ absorption capacity by each species of plants.

No	Species	CO ₂ Absorption Capacity (kg/tree/year)
1	Pometia pinnata	329.76
2	Swietenia mahagoni	295.73
3	Swietenia macrophylla	114.03
4	Artocarpus heterophyllus	126.51
5	Tectona grandis	135.27
6	Manilkara kauki	41.78

Source: Dahlan (2007)

CO₂ emission from transportation

The following formula is a formula to calculate the ${\rm CO_2}$ emission from the transportation sector (IPCC, 2006).

 CO_2 emissions = Fuel Consumption (lt) x Fuel EF x

NVC Fuel

EF Benzine : 69.300 CO₂ kg/TJ

NVC Benzine : 33×10^{-6} TJ/lt

CO, emission from household

The following formula is used to calculate household emissions.

a) CO₂ emissions from household (LPG)

 CO_9 emissions = FPG Consumption (kg) x EF LPG x

NVC LPG

EF LPG : 63100 CO₂ kg/TJ

NVC LPG : 47.3 MJ/kg

b) CO₂ emissions from household (Electricity)

 CO_{g} emissions = Electricity Consumption (KWh) x

Electricity EF

Electricity EF : 0.719 kg CO₉/KWh

c) CO₂ emissions household (waste)

CO₂ emissions = Consumption of Waste (kg) x EF of

Waste

Waste EF : $2.56 \text{ kg CO}_{2}/\text{kg waste}$

CO, emission in the business sector

a) CO₂ emission of energy

 CO_9 emissions = Mass of fuel (Gg) x Emission Factor

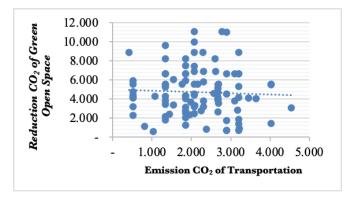
(kg/TJ) x NCV (TJ/Gg)

EF LPG : $63100 \, \text{CO}_{2} \, \text{kg/TJ}$

NVC LPG : 47.3 MJ/kg

b) CO₂ emission of electricity

 CO_{2} emissions = EF x Electricity Consumption


EF: 0.000817 ton CO2/kWh (DEN, 2019)

RESULTS AND DISCUSSION

Relationship between CO_2 Emissions of Transportation with CO_2 Reduction of Green Open Space

In Figure 1, it can be seen that the direction of both correlations is negative because the line formed decreases. This correlation looks weak because the impact is minimal. The equation formed is Y=-0.1402X+5035.9.

Base on the ANOVA result, the F value obtained was 0.255 (Table 2). This F value is used in the F-test to evaluate the hypothesis in predicting the contribution of the independent variable (X_1) to the dependent variable (Y). If the value of Fcount > Ftable, then variable X is affected simultaneously by variable Y. It can be seen that the F count is 0.255 and a significance value of 0.722. Then ρ_{y1} > 0, there is a relationship between CO_2 Emissions Transportation and CO_2 reduction in green open space.

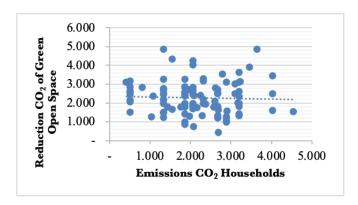

Figure 1. The scatter of the relationship between CO2 emissions of transportation and the CO2 reduction of green open space.

Table 2. ANOVA relationship between CO₂ emissions of transportation and the CO₂ reduction of green open space.

	Model	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	207448.411	1	208448.411	.255	.615 ^b
	Residual	79823822.98	98	814528.806		
	Total	80031271.39	99			

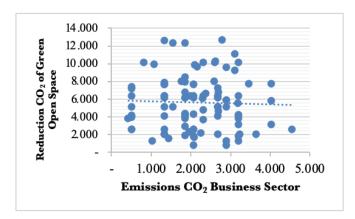
Relationship between CO_2 Emissions of Households and CO_2 Reduction of Green Open Space

Figure 2 illustrates the relationship between Variable X_2 and Variable Y. The scatterplot reveals a negative correlation between the two variables. However, the association is weak, as evidenced by the scattered distribution of data points. The regression equation representing this relationship is $Y = -0.0348 \ X + 2350.5$.

Figure 2. The scatter of the relationship between CO₂ emissions of households and the CO₂ reduction of green open space.

The one-way ANOVA test results revealed that the calculated F-value for the relationship between household CO₂ emissions and the CO₂ reduction provided by green open spaces is 0.128, with a significance value of 0.722 (Table 3). Since $\rho_{y2}>0$, this indicates a relationship exists between household CO₂ emissions and the CO₂ reduction achieved by green open spaces.

Table 3. ANOVA relationship between CO_2 emissions of households and the CO_2 reduction of green open space.


Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	104167.318	1	104167.318	.128	.722 ^b
Residual	79927104.07	98	815582.695		
Total	80031271.39	99		•	

Relationship between CO₂ Emissions of Business Sector and the CO₂ Reduction of Green Open Space

Variabel X_3 and Variable Y are presented in Figure 3. It can be seen that the relationship between both variables is negative. The correlation has a weak or minimal impact, as seen from the slightly scattered points. The equation formed is Y = -0.1185X + 5853.1.

Based on the results of the one-way ANOVA test table, it was found that the significance value between CO_2 emissions of the business sector and the CO_2 reduction green open space is 0.722 (Table 4). This value indicates

that ρ_{y3} > 0, then there is a relationship between CO_2 emissions of the business sector and the CO_2 reduction of green open space.

Figure 3. The scatter of the relationship between CO_2 emissions of the business sector and the CO_2 reduction of green open space.

Table 4. ANOVA relationship between CO₂ emissions of business sector and the CO₂ reduction of green open space.

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	104062.590	1	104162.590	.128	.722 ^b
Residual	79927208.80	98	815583.763		
Total	80031271.39	99			

Relationship between Emissions CO₂ Transportation, Emissions CO₂ Households, Emissions CO₂ Business Sector with Reduction CO₂ of Green Open Space

The results of the R Square of 0.004 indicate that a value of 0.4% is the value of the CO_2 Emission effect Transportation to CO_2 Reduction green open space; the remaining 99.6% is influenced by other factors outside the model. It can be seen that the relationship between variables is not good because the value is below 50%. The R-value indicates the relationship between the independent and dependent variables with a value of 0.062, so the level of the relationship is very low.

Table 5. ANOVA relationship between CO_2 emissions of the transportation sector and the CO_2 reduction of green open space.

Model	Sum of Squares	df	Mean Square	F	Sig.
1 Regression	310167.798	3	103389.266	.103	.945 ^b
Residual	79721103.59	96	830428.162		
Total	80031271.39	99			

Based on the results of the one-way ANOVA test table, it was found that the significance value between CO_2 emissions of households and the CO_2 reduction of green

open space is 0.945. This value indicates that $\rho_{y123} > 0$, then there is a relationship between the CO_2 emissions of households and the CO_2 reduction of green open space.

CONCLUSION

The relationship between CO₂ emissions of transportation (X₂) and the CO₂ reduction of green open space (Y) has a negative direction of correlation and has the equation Y=-0.1402X+5035.9. There is a negative relationship between the CO₂ emissions of households (X_2) and the CO_2 reduction of green open space (Y). The equation for the relationship between the variables is Y = -0.0348X + 2350.5. The relationship between the CO_2 emissions of the business sector (X_2) and the CO_2 reduction of green open space (Y) has a negative relationship. The relationship between the two variables is as follows: equation Y=-0.1185X+5853.1. There is a relationship between the CO₂ emission of transportation (X₁), CO₂ emissions of households (X₂), and the CO₃ emissions of the business sector (X_3) , all together with the CO₂ reduction of green open space (Y).

REFERENCES

Akhadi, M. (2009). Ekologi Energi: Mengenali Dampak Lingkungan dalam Pemanfaatan Sumber-Sumber Energi. Yogyakarta: Graha Ilmu.

Dahlan, E. N. (2007). Analisis ebutuhan Hutan Kota sebagai Sink Gas CO₂ Antropogenik dari Bahan Bakar Minyak dan Gas di Kota Bogor dengan Pendekatan Sistem Dinamik. [Disertasi]. Bogor: Institut Pertanian Bogor.

Dahlan, E. N. (2008). Jumlah Emisi Gas CO₂ dan Pemilihan Jenis Tanaman Berdaya Rosot Sangat Tinggi: Studi Kasus di Kota Bogor. *Jurnal Media Konservasi*, 13(2): 85-89.

Dewi, I.K., Febriani, Y., & Wicaksono, A. (2024). Carbon Dioxide (CO₂) sequestration by trees and green open space (GOS) at the campus of Pakuan University. *Indonesian Journal of Applied Environmental Studies*, 5(1): 29-34.

IPCC [Intergovermental Panel on Climate Change]. (2006). Guidelines for National Greenhouse Gas Inventories – A primer. Kanagawa, Japan:

IGES. http://www.ipccnggip.iges.or.jp/public/2006gl

Nugroho, A., & Fazzry, B. (2016). Analisis Emisi Gas Rumah Kaca (CO₂) Angkutan Antar Kota Dalam Provinsi (AKDP) di Jawa Timur. *Prosiding SENIATI (BOOK-1), 2(1): 16-20.* DOI: https://doi.org/10.36040/seniati.vi0.980

Nugraha, L. M., Winarno, B., Fahmi, S., & Lestari, S. (2022). Opportunities and challenges of urban green open space for climate change mitigation and adaptation in Bogor, West Java. *IOP Conf. Ser.: Earth Environ. Sci.* 1109 012013.

Pratama, R. (2019). Efek rumah kaca terhadap bumi. *Buletin Utama Teknik*, 14(2): 120-126.

Priatna, D., & Khan, S.M. (2024). The importance of education and role of educational institutions in climate change mitigation and achieving UN SDG 13 "Climate Action". *Indonesian Journal of Applied Environmental Studies*, 5(1): 1-5. DOI: 10.33751/injast.v5i1.10559

Priatna, D., & Monk, K. A. (2023). Climate change and its implications on wildlife conservation. *Indonesian Journal of Applied Environmental Studies*, 4(2): 64-66. DOI: 10.33751/injast.v4i2.9661

DEN [Dewan Energi Nasional]. (2019). *Indonesia Energy Outlook 2019*. Jakarta: Kementerian ESDM.

96 © Pakuan University