RANCANG BANGUN BOT WHATSAPP OTOMATIS BERBASIS GOLANG DAN API PERPLEXITY SEBAGAI INOVASI DIGITAL MARKETING UMKM PERIKANAN

Dwi Budi Santoso, Yuli Wahyuni

Abstract


ABSTRAK

 

Transformasi digital pada sektor perikanan menuntut pelaku UMKM untuk mampu beradaptasi terhadap teknologi komunikasi yang efisien, khususnya dalam pelayanan pelanggan dan pemasaran. Penelitian ini merancang dan membangun Bot WhatsApp otomatis berbasis bahasa pemrograman Golang yang diintegrasikan dengan Application Programming Interface (API) Perplexity, sebuah model kecerdasan buatan berbasis Large Language Model (LLM). Tujuannya adalah meningkatkan efektivitas interaksi pelanggan dan efisiensi promosi produk perikanan, khususnya pada kelompok pembudidaya ikan nila salin di Desa Tunggulrejo, Kecamatan Tayu, Kabupaten Pati. Sistem menggunakan library whatsmeow untuk koneksi WhatsApp, serta SQLite sebagai basis data lokal untuk manajemen sesi perangkat. Pengujian menunjukkan bahwa bot mampu menjawab pertanyaan pelanggan dengan relevan dan efisien, dengan tingkat respons rata-rata di bawah 3 detik. Hasil implementasi menunjukkan potensi besar integrasi AI-driven conversational marketing pada sektor UMKM perikanan untuk memperluas jangkauan pasar dan meningkatkan daya saing.

 

Kata kunci : Bot WhatsApp, Golang, API Perplexity, Digital Marketing, UMKM Perikanan.

 

 

ABSTRACT

 

The digital transformation in the fisheries sector requires MSMEs to adapt to efficient communication technologies, particularly in customer service and marketing. This study designs and develops an automatic WhatsApp Bot based on the Go programming language integrated with the Perplexity API, a Large Language Model (LLM)-based artificial intelligence service. The system aims to enhance customer interaction and marketing efficiency for fishery micro-entrepreneurs, especially the saline tilapia farming group in Tunggulrejo Village, Tayu District, Pati Regency. The bot utilizes the whatsmeow library for WhatsApp connectivity and SQLite as the local database for device session management. Testing results show that the bot provides relevant and responsive answers with an average response time below 3 seconds. The implementation demonstrates the potential of integrating AI-driven conversational marketing into the fisheries MSME sector to expand market reach and strengthen competitiveness.

 

Keywords: WhatsApp Bot, Golang, Perplexity API, Digital Marketing, Fisheries MSMEs.

References


DAFTAR PUSTAKA

P. A. Bernstein, “Middleware: A model for distributed system services,” Proc. IEEE, technical report/whitepaper, 1996. [Accessed: Oct. 2, 2025]

D. E. Bakken, “Distributed Object Middleware,” Washington State Univ., course notes, 2025. [Accessed: Oct. 3, 2025]

N. Aeni, “Strategi Pengembangan Budi Daya Ikan Nila Salin (Oreochromis niloticus) di Kabupaten Pati,” Buletin Ilmiah Marina Sosial Ekonomi Kelautan dan Perikanan, vol. 6, no. 2, pp. 7–17, 2023.

S. Widia, “Peningkatan Kapasitas Penjualan Pasca Panen Melalui Diversifikasi Produk untuk Budidaya Ikan Nila Salin,” Jurnal Dinamika, vol. 13, no. 1, pp. 35–48, 2024.

T. Elfitasari, “Challenges Encountered By Small Scale Fish Farmers in Assuring Fish Product Sustainability,” Omni-Akuatika, vol. 10, no. 1, pp. 23-31, 2017.

A. Puspita, Y. Yuningsih, M. Fahmi, and Y. Wahyuni, “Perancangan Sistem Informasi Akuntansi Pembelian Barang pada PT Bangun Prestasi Bersama Jakarta,” Jurnal Sistem Informasi, vol. 10, no. 1, pp. 35–45, Feb. 2021.

E. D. Septiara, “The Effect of Fishpreneurs Utilization of Social Media on Marketing and Income of Fish Farming: Evidence from Indonesia,” Aquacultura Indonesia, vol. 8, no. 1, pp. 40-47, 2022.

A. Nurhayati, “Peran Edukasi Pemasaran Digital untuk Pelaku Usaha Kelautan dan Perikanan,” Dharmakarya, vol. 11, no. 4, 2022.

J. P. Nugraha, “Analisis Pengaruh Digital Marketing dan Electronic Word of Mouth Terhadap Peningkatan Penjualan Produk pada UMKM Pengolahan Produk Perikanan,” EKOMA : Jurnal Ekonomi, Manajemen, Akuntansi, vol. 4, no. 2, pp. 3910-3922, 2025.

G. R. A. Kartika et al., “Transformasi UMKM Perikanan di Kabupaten Badung Melalui Pelatihan Pemasaran Digital dengan Aplikasi www.tokoikan.id,” Sricommerce: Journal of Sriwijaya Community Services, vol. 5, no. 2, pp. 149-158, 2024.

D. Sriwulan, N. Annaastasia, W. Jali, & A. Sarifin, “Digital Marketing of Fishery Products: Marketing Strategy during the COVID-19 Pandemic,” J. Online Fakultas Pertanian Unila, 2023.

S. Adiningsih, “Implementation of Chatbot Auto Reply on WhatsApp Using Artificial Intelligence (Case Study of Sri Ratu Laundry),” Jurnal Pengabdian dan Pemberdayaan Masyarakat – JPNMB, vol. ?, no. ?, pp. ?, 2024.

Wahyuni, Y., Ammar, F. and Anggraeni, I., 2022. Application of Pregnant Mom's Diet Based on Raspberry PI Using Telegram Chatbot. Journal of Applied Engineering and Technological Science (JAETS), 4(1), pp.209-214.

S. M. Wijaya, M. E. Q. Zahra, F. N. Prawita, “MicroLingo: Chatbot WhatsApp berbasis AI untuk pelatihan bahasa Inggris dengan pendekatan microlearning untuk pelaku UMKM generasi Z di Indonesia,” e-Proceeding of Applied Sciences, vol. 11, no. 1, pp. 72-76, 2025.

P. A. Alia, “Implementation Chatbot on WhatsApp Using Artificial Intelligence,” Electron: Jurnal Ilmiah Teknik Elektro, vol. 5, no. 1, May 2024.

Z. R. Naufal, L. Karlitasari, and Y. Wahyuni, “Penghitung Ideal Massa Lemak Tubuh Menggunakan Website (Counter Ideal Body Mass Using the Website),” Jurnal Aplikasi Bisnis dan Komputer, vol. 2, no. 2, pp. xx–xx, 2022.

D. B. Santoso and Y. Wahyuni, “Deteksi Anomali pada Log Sistem Web Server Menggunakan Isolation Forest (Anomaly Detection in Web Server System Logs Using Isolation Forest),” Jurnal Aplikasi Bisnis dan Komputer, vol. 4, no. 3, pp. 90–96, Nov. 2024.

Y. Wahyuni and A. S. M. Huda, “Web-Based Cloud Technology as an Alternative Solution for Effectively Overcoming Chronic Nutrition Problems in Diseases Experienced by Pregnant Women,” SINTAK, vol. 3, 2019.

Y. Wahyuni, “Portable device for measuring heart rate of pregnant women based on IP address with BPM graph display,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 7, no. 1, pp. 22–29, 2023.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023, doi: 10.1145/3560815.

L.-C. Chen, H.-T. Weng, M. S. Pardeshi, C.-M. Chen, R.-K. Sheu, and K.-C. Pai, “Evaluation of prompt engineering on the performance of a large language model in document information extraction,” Electronics, vol. 14, no. 11, article 2145, 2025, doi: 10.3390/electronics14112145.

J. Sidlauskiene, Y. Joye, and V. Auruskeviciene, “AI-based chatbots in conversational commerce and their effects on product and price perceptions,” Electronic Markets, vol. 33, article 24, 2023, doi: 10.1007/s12525-023-00633-8.


Full Text: XML

DOI: 10.33751/jubikom.v5i3.12913 Abstract views : 8 views : 5

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Aplikasi Bisnis dan Komputer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.