DESAIN PLATFORM MONITORING DAN OBSERVABILITY UNTUK MICROSERVICE BERBASIS ELASTIC STACK

irma anggraeni, Fahmi Noor Fiqri

Abstract


Sistem monitoring dan observability untuk microservice menggunakan Elastic Stack ini merupakan implementasi dashboard dan pelaporan yang bertujuan untuk menghadirkan sistem yang tersentralisasi bagi tim bizops dan tim teknis di Logee Trans untuk memudahkan proses pendeteksian, diagnosis, dan penyelesaian masalah pada sistem yang sedang beroperasi. Sistem ini dibangun menggunakan Elastic Stack yang terdiri atas Elasticsearch, Kibana, dan Logstash. Metode penelitian yang digunakan adalah pendekatan Software Development Life Cycle (SDLC) dan telah berhasil menghasilkan produk berupa dasbor yang dapat memberikan rangkuman aktivitas sistem dan performanya. Setelah dilakukan dua sesi pengukuran untuk mengidentifikasi masalah performa, penggunaan dasbor ini dapat membantu developers untuk meningkatkan performa sistem sebesar 30%.

 

 

 


Keywords


monitoring; observability;microservices;elastic stack.

References


A. Altvater, What Is SDLC? Understand the Software Development Life Cycle,†Stackify, 2020. https://stackify.com/what-is-sdlc/ (accessed Jun. 21, 2021).

G. Wiesen and H. Bailey, What Is a System Monitor?,†wiseGEEK, 2010. https://web.archive.org/web/20101207054610/https://www.wisegeek.com/what-is-a-system-monitor.htm (accessed Jun. 21, 2021).

Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, Observability of complex systems,†Proc. Natl. Acad. Sci., vol. 110, no. 7, pp. 24602465, Feb. 2013.

I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice Architecture: Aligning Principles, Practices, and Culture. OReilly Media, Inc., 2016.

W. Hasselbring and G. Steinacker, Microservice Architectures for Scalability, Agility and Reliability in E-Commerce,†in 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), Apr. 2017, pp. 243246. doi: 10.1109/ICSAW.2017.11.

C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine. OReilly Media, Inc., 2015.

S. Bagnasco, D. Berzano, A. Guarise, S. Lusso, M. Masera, and S. Vallero, Monitoring of IaaS and scientific applications on the Cloud using the Elasticsearch ecosystem,†J. Phys. Conf. Ser., vol. 608, p. 012016, May 2015, doi: 10.1088/1742-6596/608/1/012016.

M. Bajer, Building an IoT Data Hub with Elasticsearch, Logstash and Kibana,†in 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Aug. 2017, pp. 6368. doi: 10.1109/FiCloudW.2017.101.

N. Shah, D. Willick, and V. Mago, A framework for social media data analytics using Elasticsearch and Kibana,†Wirel. Netw., Dec. 2018, doi: 10.1007/s11276-018-01896-2.

J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C. Gall, An Empirical Analysis of the Docker Container Ecosystem on GitHub,†in 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), May 2017, pp. 323333. doi: 10.1109/MSR.2017.67.

R. Smith, Docker Orchestration, 1st ed. Birmingham: Packt Publishing, 2017.


Full Text: PDF Abstract views : 272 views : 199

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Aplikasi Bisnis dan Komputer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.