Lusi Nurbaiti Badri, Irma Arlini Dewi, & Arif Wicaksono




Pada studi ini dilakukan analisis untuk mengetahui karakteristik dari produk inovasi peserta lomba Bogor Innovation Awards 2022 dari peserta pelajar SMP dan SMA. Sebanyak 21 produk inovasi dari pelajar SMA dan 10 produk inovasi dari pelajar SMP diolah dengan metode Principal Component Analysis (PCA) untuk mengelompokkan dimensi faktor-faktor penilaian produk inovasi. Sebanyak 11 faktor penilaian dibobotkan dengan menggunakan metode entropy untuk mengkasifikasikan produk inovasi pelajar. Kesebelas faktor tersebut adalah Kemanfaatan, Permasalahan, Originalitas, Penciptaan Produk Inovasi, Kemudahan Bahan Baku, Penggunaan Bahan Baku Lokal, Potensi Pengembangan, Komersialisasi, Replikasi, Kelengkapan Materi, dan Penguasaan Materi Inovasi. Hasil pengolahan data dengan metode PCA menunjukkan bahwa faktor-faktor dimensi 1 meliputi penciptaan produk inovasi, potensi pengembangan, originalitas, permasalahan dan kemanfaatan. Sedangkan faktor-faktor dalam dimensi 2 meliputi penggunaan bahan baku lokal, replikasi, kelengkapan materi, dan penguasaan materi inovasi. Hasil pengolahan data menggunakan metode entropy menunjukkan bobot faktor adalah Kemanfaatan (0,081), Permasalahan (0,052), Originalitas (0,088), Penciptaan Produk Inovasi (0,14), Kemudahan Bahan Baku (0,076), Penggunaan Bahan Baku Lokal (0,063), Potensi Pengembangan (0,061), Komersialisasi (0,37), Replikasi (0,037), Kelengkapan Materi (0,018), dan Penguasaan Materi Inovasi (0,014).


Kata Kunci : Produk inovasi pelajar, Bogor Innovation Awards, Principal Component Analysis,






In this study, an analysis was conducted to investigate the characteristics of junior and high school students’ innovation products from Bogor Innovation Awards 2022. 21 products from senior high school students and 10 products from junior high school students were inputted with Principal Component Analysis (PCA) method to identify dimensions of factors contributing to innovation products. Eleven factors of judgment were weigthed using entropy method to classify students’ products. Those eleven factors are usefulness, problem statement, originality, product creation, easy acces to raw materials, use of local materials, development potential, commercial use, replication, presentation material completeness, and sufficient knowledge of presentation material. Data analysis using PCA method shows that factors in Quadrant I include use of local materials, replication, presentation material completeness, and sufficient knowledge of presentation material. Meanwhile contributing factors in Quadrant II include product creation, development potential, originality, problem statement and usefulness. The results of data processing using the entropy method show that the weights for each factor are commercial use (0.37), product creation (0.14), originality (0.088), usefulness (0.081), easy acces to raw materials (0.076), development potential ( 0.061), use of local materials (0.063), problem statement (0.052), replication (0.037), presentation material completeness (0.018), and sufficient knowledge of presentation material (0.014).


Keywords :Students, innovation products, Bogor Innovation Awards, Principal Component

                  Analysis, Entropy


Doğruparmak, Ş.Ç., Keskin, G.A., Yaman, S., & Alkan, A. (2014). Using principal component analysis and fuzzy c–means clustering for the assessment of air quality monitoring. Atmospheric Pollution Research, 5, 656-663.

Hoang, H.T., Truong, Q.H., Nguyen, A.T., & Hens, L. (2018). Multicriteria Evaluation of Tourism Potential in the Central Highlands of Vietnam: Combining Geographic Information System (GIS), Analytic Hierarchy Process (AHP) and Principal Component Analysis (PCA). Sustainability.

Malczewski, J., & Rinner, C. (2015). GIS-MCDA for Group Decision Making.

Meng, Y., & Malczewski, J. (2015). A GIS-based multicriteria decision making approach for evaluating accessibility to public parks in Calgary, Alberta.

Wicaksono, A. (2023, June). Classification of public urban park locations for revitalization priority using GIS and ELECTRE. In AIP Conference Proceedings (Vol. 2727, No. 1). AIP Publishing.

Full Text: PDF

DOI: 10.33751/teknik.v24i02.9493 Abstract views : 43 views : 22


  • There are currently no refbacks.