KONSERVASI DALAM USAHA MELESTARIKAN DAN MENYELAMATKAN SUMBER DAYA AIR DENGAN SUMUR RESAPAN.

Oleh:

Heny Purwanti dan Arif Mudianto

Abstrak

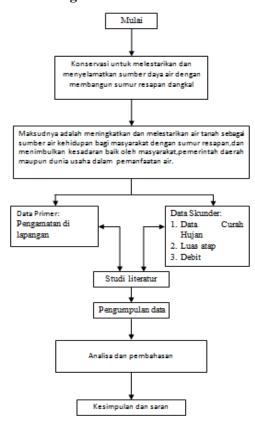
Seiring dengan meningkatnya pertambahan penduduk dan pertumbuhan ekonomi secara umum telah menjadi penyebab meningkatnya kebutuhan penyediaan air. Salah satu upaya pemenuhan kebutuhan air perlu pemeliharaan lokasi sumber air baik air permukaan dan air tanah secara terpadu.

Berdasar penelitian untuk wilyah Babakan Madang, Cisarua, dan Megamendung yang dilakukan selama 3 periode (1 periode = 10 tahun) dimulai tahun 1981 sampai dengan tahun 2010., melalui peritungan diperoleh prosentase imbuhan air tanah terhadap luas atap sebesar 0,151 %, sedangkan untuk masing-masing periode yaitu periode 1 yaitu 0,091 %, periode 2 yaitu 0,131 %, periode 3 yaitu 0,232 %.

Nilai indek peresapan air untuk kawasan Bogor kini telah jauh mengalami penurunan, hal tersebut diperkirakan disebabkan oleh banyaknya kawasan lindung berubah peruntukkannya, sebagai contoh adalah wilayah Puncak, wilayah ini masuk zona B3 yakni pertanian tinggi dan hunian rendah. Akan tetapi kini, kawasn tersebut telah berubah fungsi menjadi perumahan, vila, hotel serta bangunan lain.

Kata-kata kunci: Sumber Daya Air, Sumur Resapan, infiltrasi, akifer, karst.percolasi.

1. PENDAHULUAN


Sumber air dari air tanah yang tersimpan dalam lapisan akifer. sumber air tanah yang sangat penting dan dapat dijumpai pada dataran pantai, daerah kaki gunung, lembah antar pegunungan, dataran aluvial dan daerah topografi karst.

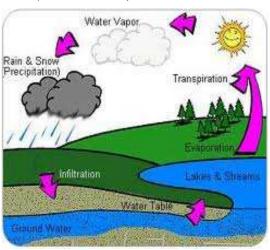
Akifer ditinjau dari sistemnya terdiri dari akifer tak tertekan, akifer semi tertekan dan akifer tertekan.

Maksud dan tujuan penelitian adalah memperoleh informasi dalam menanggulangi keterbatasan air bersih serta meningkatkan dan melestarikan air tanah sebagai sumber air kehidupan masyarakat, dengan membangun sumur resapan..

Ruang lingkup pembahasan untuk resapan buatan adalah kawasan Puncak - Bogor, sedangkan untuk daerah resapan alami adalah daerah aliran Katulampa.

1.1. Kerangka Pemikiran

Gambar 1. Alur dan Kerangka Pemikiran Penelitian


2. TINJAUAN PUSTAKA

2.1. Siklus Hidrologi

Siklus hidrologi dimulai air dan lautan dan daratan mengalami proses penguapan (Evaporation), baik yang langsung maupun yang melalui tanaman (Transpiration) yang kemudian dibawa oleh udara dan akan memadat dan membentuk awan-awan pada akhirnya akan menjadi hujan (Rain Fall) yang jatuh kembali ke daratan atau ke lautan.

Air hujan yang jatuh kepermukaan bumi akan menjadi aliran permukaan (Surface Stream Flow), sebagian langsung meresap ke dalam tanah (infiltration), sisanya akan melimpas sebagai limpasan permukaan (Surface Run Off).

Air yang meresap masuk ke dalam tanah (infiltration) akan menjadi aliran antara (Interflow) dan sebagian akan bergerak masuk lebih ke dalam lagi, yaitu ke lapisan jenuh air (Percolation) dan menjadi bagian dari air tanah (Ground Water).

2.2. Batas Teknis Hidrologis

Terdapat 3 (tiga) wilayah/daerah teknis atau hidrologis pengelolaan sumber daya air, yaitu cekungan air tanah (CAT), daerah aliran sungai (DAS) dan wilayah sungai (WS). Cekungan air tanah (CAT) adalah suatu wilayah yang dibatasi oleh batas hidrogeologis, tempat semua kejadian hidrogeologis, seperti proses pengimbuhan, pengaliran dan air tanah pelepasan berlangsung

Daerah aliran sungai (DAS) adalah suatu wilayah daratan yang merupakan satu

kesatuan dengan sungai dan anak-anak sungainya, yang berfungsi menampung, menyimpan dan mengalirkan air yang berasal dari curah hujan ke danau atau ke laut (*Undang-Undang No. 7 Tahun 2004*).

Wilayah sungai (WS) adalah kesatuan wilayah pengelolaan sumber daya air dalam satu atau lebih DAS dan atau pulau-pulau kecil yang luasnya kurang dari atau sama dengan 2.000.

Cekungan air tanah (CAT) atau groundwater basin terdiri atas akifer tertekan (confined aquifer) dan akifer bebas (unconfined aquifer).

Gambar 2. Batas Daerah Hidrologis (CAT, DAS, WS) dan wilayah Administratif Kabupaten/Kota

2.3. Curah Hujan

Curah hujan harian yang tercatat dapat dilihat pada stasiun di daerah aliran selama beberapa tahun dapat diperoleh di Badan Meteorologi dan Geofisika (masih merupakan data dasar). Beberapa cara yang digunakan untuk perhitungan curah hujan rata-rata daerah adalah:

2.2.1 Cara tinggi rata-rata.

Tinggi rata-rata curah hujan diperoleh dengan menggunakan formula nilai rata-rata hitung (*Arithmetic Mean*) pengukuran hujan di pos pengamatan hujan di dalam areal tersebut.

$$d = \frac{d_1 + d_2 + d_3 + \dots + d_n}{n} = \sum_{i=1}^{n} \frac{d_1}{n}$$

dimana:

d = tinggi curah hujan (mm)

 d_1 , d_2 , d_n = tinggi curah hujan pada pos 1, 2,...

n, (mm)

n = banyaknya pos pengamata

2.2.2 Curah hujan 24 jam

Curah hujan 24 jam yaitu hujan yang terjadi pada sembarang waktu dan di baca pada saat mulai hujan sampai 24 jam kemudian, sedangkan curah hujan harian adalah pencatatan curah hujan pada stasiun pengamatan di mana pencatatan di lakukan mulai pukul 07.00 pagi

 $R_{24} = 1.12 * x$

 $Di \ mana: R_{24} \quad = Curah \ hujan \ 24 \ jam \ (mm)$

x = Curah hujan harian (mm)

2.2.3 Koefisien Aliran Permukaan (C)

Koefisien aliran permukaan (C) didefinisikan sebagai nisbah antara puncak laju aliran permukaan terhadap intensitas hujan, dapat di lihat pada tabel .1 dan tabel dan .2 berikut

Tabel .1 Nilai Koefisien Limpasan (C)

Tipe Kawasan Daerah Airan Sungai (DAS)	Koefisien Limpasan
Halaman Rumput Tonah berpoeir, deter (2%) Tanah berpoeir, enternie (2-7%) Tanah berpoeir, enternie (7%) Tanah berpoeir, enternie (7%) Tanah berat, datar (2%) Tanah berat, rete-rata (2-7%) Tonah berat, ouram (7%)	0.05 - 0.10 0.10 - 0.15 0.15 - 0.20 0.13 - 0.17 0.18 - 0.22 0.25 - 0.35
Blania Kawasan kota Kawasan pinggiran	0.70 - 0.95 0.50 - 0.70
Kawasan Pemukiman Kawasan helitanga tunggal Multi astuan tunggal Multi astuan, berdampetan Pingiran Kost Kawasan tempat tinggal berupa rumah susun Parladustrian	0.30 - 0.50 0.40 - 0.80 0.60 - 0.75 0.25 - 0.45 0.50 - 0.70
Kawasan lierat	0.50 - 0.80
Tanaman-tanaman dan kuburan Lapangan Bermain	0.10 - 0.25
Kawasan halaman rel kereta api	0.20 - 0.40
Kawasan yang belum dperbaiki Jalan-jalun	0.10 - 0.30 0.70 - 0.85
Beraspal Beton Batu bata Jalan raya	0.50 - 0.95 0.70 - 0.85
Atap	0.75 - 0.85

Sumber: Nilai-nilai Koefisien Limpasan Pada Rumus Rasional (Chow, 1964; Gray, 1973)

Tabel 2. Nilai koefisien limpasan untuk DAS tertentu

Tipe Kawasan Pertanian	c
TOPOGRAFY Lahan datas, kemenngan rata-rata 1 fengga 3 kalik per mil Lahan bekomtak kemanngan rata-rata 25 binggan 20 kalik per mil Lahan behakit, kemengan rata-rata 20 hingga 250 kalik per mil	0.30 0.20 0.10
TANAH List hostap ser yang nepal Kontenson-konthonas medium dan lat dan lampung Lempung hepadar yang terbaha	0,10 0,20 0,40
PENUTUP TANAMAN Lahan-lahan yang dissahakan Lahan kasyu	0,10

Sumber; Nilai Koefisien Limpasan Untuk Daerah Aliran Sungai Tertentu (Bernard,1935 Dan untuk nilai Koefisien limpasan (C) untuk beberapa bentuk permukaan bumi adalah seperti pada tabel .3, di atas

Tabel 3. Nilai Koefisien Limpasan (C) Untuk beberapa bentuk Permukaan Bumi

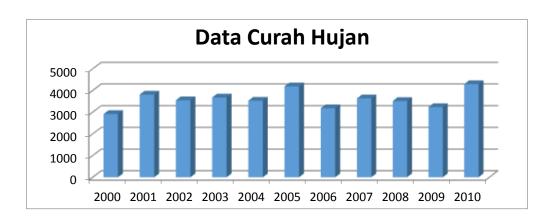
No	Jenis Permukaan	(C)
1	Air terbuka	0,07
2	Rerumputan	0,25
3	Hutan gugur daun	0,18
4	Hutan runjung	0,13
5	Tanaman pertanian semusim	0,23
6	Semak belukar	0,17
7	Kebun jeruk	0,17

3. ANALISIS DAN PEMBAHASAN

3.1 Potensi Sumur Resapan

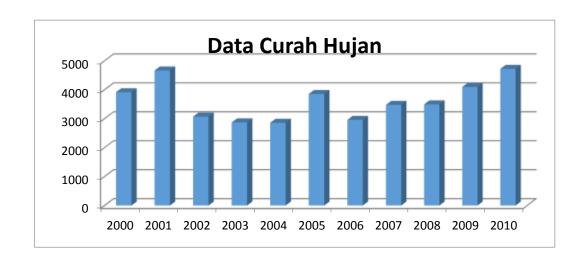
Airtanah adalah air yang terdapat atau tersimpan dalam tanah, berasal dari air hujan yang jatuh ke permukaan bumi, kemudian meresap ke dalam tanah (infiltrasi). Jenis – jenis air tanah Berdasarkan letaknya air tanah dapat dibedakan menjadi dua, yaitu:

- a) Air Tanah Dangkal Air tanah yang berada di antara muka bumi hingga lapisan kedap air (impermiabel) dinamakan air tanah dangkal atau air tanah bebas.
- b) Air tanah dalam Di samping air tanah dangkal ada pula yang dinamakan air tanah dalam. Airtanah dalam terletak di antara dua lapisan impermeabel.

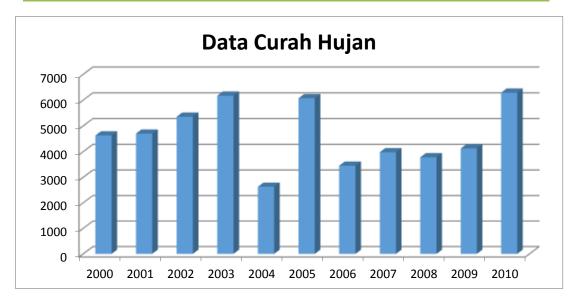

Pada tahap ini akan di hitung potensi dan banyak air permukaan dengan data permukaan atap perumahan dari Goegle earth 2012, dengan jumlah curah hujan.

3.1.1 Data Curah Hujan

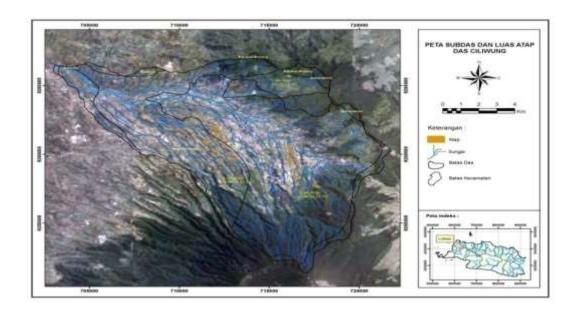
Data curah hujan lokasi pos pengamatan curah hujan antara lain data dari pos lokasi Megamendung yaitu stas. Gadod, Cisarua yaitu stas. Gn mas, babakan madang yaitu stas. cibongas dapat dilihat pada table 4.3 dengan rata-rata didapat 511,90 mm.

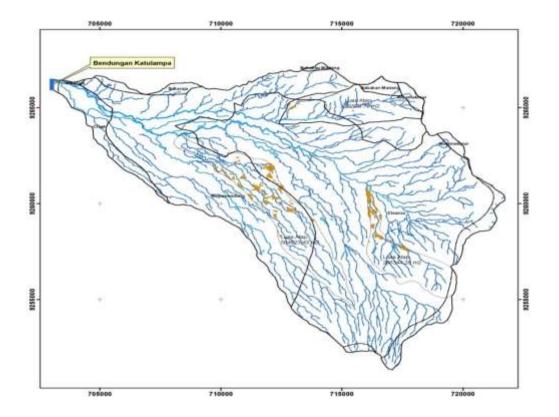

Tabel 4. Data jumlah curah hujan pada stas.pos pengamatan Gadog

D. L.						Bu	lan						7
Bulan	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des	Jumlah
2000	305	310	256	265	157	171	225	142	183	345	363	193	2.915
2001	519	519	306	326	274	219	227	177	287	440	448	71	3.813
2002	695	478	371	397	211	168	330	100	46	133	425	198	3.552
2003	161	477	211	429	333	84	16	290	316	512	230	618	3.677
2004	567	473	311	282	404	74	132	26	257	259	373	372	3.530
2005	728	436	468	219	241	305	168	284	322	382	309	332	4.194
2006	496	624	209	265	208	54	92	3	44	144	219	825	3.183
2007	442	711	356	340	76	231	53	68	78	247	413	622	3.637
2008	342	518	518	407	99	29	21	95	254	324	596	312	3.515
2009	458	404	301	244	366	158	93	50	158	399	301	305	3.237
2010	395	554	445	113	326	355	205	383	486	322	410	304	4.298


Tabel 5. Data jumlah curah hujan pada stas.pos pengamatan Gunung mas

Deslare	Bulan												Jumlah
Bulan	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des	Juiiiaii
2000	757	571	313	454	456	108	170	39	77	210	568	192	3.915
2001	815	929	570	573	272	163	124	51	193	431	475	70	4.666
2002	672	765	400	283	64	140	176	41	13	37	205	277	3.073
2003	146	550	337	238	113	90		95	185	434	145	540	2.873
2004	342	553	232	361	303	53	80	9	205	90	231	403	2.862
2005	668	626	441	157	212	306	169	149	302	194	306	327	3.857
2006	799	576	159	364	175	52	42	17	32	180	108	455	2.959
2007	537	858	343	307	99	130	29	97	45	186	342	506	3.479
2008	367	636	525	393	279	95	2	115	47	221	502	314	3.496
2009	777	658	544	407	410	113	52	2	31	278	450	376	4.098
2010	651	518	775	148	361	210	182	294	455	400	332	396	4.722




Tabel 6. Data jumlah curah hujan pada stas.pos pengamatan Cibongas

D. L.	Bulan											T	
Bulan	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Ags	Sep	Okt	Nov	Des	Jumlah
2000	600	450	250	381	355	574	409	234	245	297	368	467	4.630
2001	610	456	432	324	320	240	211	321	235	555	454	543	4.701
2002	546	656	432	342	675	345	245	210	342	345	675	543	5.356
2003	498	567	879	567	345	234	342	243	578	698	678	543	6.172
2004	607	600	567	405	268	111	112	10	116	278	880	452	4.406
2005	851	648	927	716	111	574	409	503	167	578	397	194	6.075
2006	606	460	213	381	179	174	49	16	33	185	361	798	3.455
2007	682	574	207	417	310	259	39	124	188	240	298	642	3.980
2008	422	192	666	726	51	31	23	79	309	357	595	332	3.783
2009	412	550	255	560	451	340	137	45	321	570	151	334	4.126
2010	354	786	752	69	571	307	535	709	645	460	553	548	6.289

Luas atap dari Google earth dengan menghitung luas atap perumahan yang ada di

3.1.3 Perhitungan Potensi sumur resapan

a. Luas atap di kawasan perumahan (berdasarkan Goegle earth):

1. Babakan Madang : 35.120,72 m² 2. Cisarua : 296.344,26 m² 3. Megamendung : 5.049.231,43 m²

b. Dengan asumsi koefisien runoff atap 0.9

c. Dari hasil analisis Hidrologi didapat jumlah curah hujan :

1. Babakan Madang: 3.955 mm/th
2. Cisarua: 4.000 mm/th
3. Megamendung: 5.119,90 mm/th

d. Untuk potensi m3/tahun didapat dari curah hujan dikalikan dengan hasil dari

luas atap yg telah di kalikan dengan koefisien runoff

e. Daya resap sumur dangkal, rumus:

 $Qr = 2.75 \times d \times H \times K$

d = diameter = 100 cmH = dalam = 3000 cm

K = permebilitas = 0.00035 cm/dt

 $Qr = 2.75 \times 100 \times 3000 \times 0,00035$

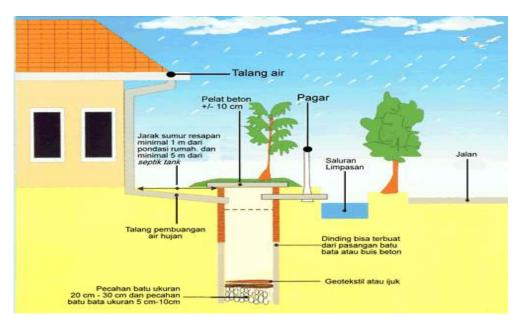
 $= 288,75 \text{ cm}^3/\text{dt}$

Untuk data perhitungan secara lengkap dapat dilihat pada table .4

Tabel 7 Potensi Sumur Resapan

Uraian	Babakan Madang	Cisarua	Megamendung				
Luas Atap (m2)	35.121,72	296.344,26	504.923,43				
Koefisien Run off atap (asumsi 0,9)	31.608,65	266.709,93	454.431,09				
Curah Hujan (mm/th)	3.955,10	4.000	5,119.90				
Potensi (m3/th)	125.015,36	1.066.839	2.326.642				
Potensi (m3/detik)	0,00396	0,03	0,07				
Potensi (ltr/detik)	4.079	34,81	75,92				
Qr sumur dangkal (liter/detik)	2,88750	2,88750	2,88750				
Volume Rata-rata yg diresapkan	iresapkan 1,172,832.14						

3.2 Potensi sumur resapan


Pada tabel 4, dihitung potensi banyaknya air permukaan/hujan yangdapat dimasukan kedalam akifer kedalaman 30 m. Dengan data permukaan atap-atap perumahan yang dihitung dengan menggunakan google earth, 2012, untuk Babakan Madang 351.121 m² dan koefisien runoff 0,9 dengan resapan 2,88750 liter/dtk di dapat potensi 40,78 liter/detik dan volume resapannya 125.015,36 m³

- Daerah Cisarua dengan luas atap 299.344 m² dan koefisien runoff 0,9 dengan resapan 2,88750 liter/dtk di dapat potensi 34,81 liter/detik dan volume resapannya 1.066.839 m³
- 2) Daerah Megamendung denngan luas atap 504.923 m² koefisien runoff 0,9 dengan resapan 2,88750 liter/dtk di dapat potensi

- 75,92 liter/detik ,dan volume resapannya 2.326.642 m³
- 3) Untuk rata-rata volume resapan dari ketiga wilayah atau daerah Babakan Madanng,
- 4) Cisarua dan Megamendung yaitu 1.172.832,14 m³

3.2.1 Gambar sumur resapan

Bangunan sumur resapan adalah salah satu rekayasa teknik konservasi air berupa bangunan yang dibuat sedemikian rupa sehingga menyerupai bentuk sumur gali dengan kedalaman tertentu yang berfungsi sebagai tempat menampung air hujan yang jatuh di atas atap rumah atau daerah kedap air dan meresapkannya ke dalam tanah.

Gambar 4.1. Sumur Resapan Perumahan

4. ANALISIS DAN PERHITUNGAN

4.1 Perhitungan Imbuhan Air Tanah

Konstanta resesi aliran dasar K dan k penting untuk menentukan imbuhan air tanah,. Adapun rumus yang digunakan:

$$\mathbf{K} = (\mathbf{Q}_t / \mathbf{Q}_0)^{1/t}$$

$$K = e^{-k}$$

$$k = - \ln K$$

Jika diketahui Q_t , Q_0 dan t , maka K dan k bisa ditetapkan

Dan gunakan hasil K dan k untuk menghitung imbuhan air tanah.

Vt adalah simpanan air tanah pada saat t dalam m³ dan Qt adalah keluaran simpanan air tanah dalam m³ / hari

$$V_t = Q_t / k$$

 $V_0 = Q_0 / k$

Jadi pada tahun 2000 dapat peroleh imbuhan tanah = volume groundwater storage yang diluah keluar selama t 107 hari seluas DPS = 469-96 = 373 juta m³

Untuk menghitung imbuhan air tanah tahun 2000

$$K = (Q_t / Q_0)^{1/t}$$

Ot =
$$15 \text{ m}^3/\text{s} = 12.96 \text{ x } 10^5 \text{ m}^3/\text{hari}$$

Qo =
$$63 \text{ m}^3/\text{s} = 54,43 \text{ x } 10^5 \text{ m}^3/\text{hari}$$

t = 107 hari

$$K = (Qt/Qo) 1/t (10^5) = 0.987$$

$$k = -\ln 0.987 = 0.013$$

$$Vt = Qt/k = 12,96 \times 10^5 \,\text{m}^3/\text{hari} /$$

$$0.013 = 96$$
 juta m³

Vo =
$$Qo/k = 54,43 \times 10 \text{ m}^3/\text{hari}/0,013 = 469 \text{ juta m}^3$$

Dan untuk tahun 1981 sampai dengan 1990 secara lengkap perhitungan menggunakan excel.

Untuk table 4.16 adalah tabel imbuhan air tanah untuk periode 2 yaitu mulai dari tahun 1991 sampai dengan 2000,adapun perhitungan periode kedua ini dimaksudkan sebagai perbandingan dengan periode 1 yaitu mulai dari tahun 1981 sampai dengan 1990.

Untuk rumus dan analisa perhitungan sama dengan periode 1, untuk tabel dan grafik debit harian katulampa mulai tahun 1981 sampai dengan 1990.

4.2. Hasil Perhitungan

- Jadi pada tahun 2001 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 89hari seluas DPS = 612-332 = 280 juta m³
- 2) Jadi pada tahun 2002 di dapat imbuhan tanah = volume groundwater storage yang di luahan keluar selama t 201 hari seluas DPS = 949-240 = 709 juta m³
- 3) Jadi pada tahun 2003 di dapat imbuhan tanah = volume groundwater storage

- yang diluah keluar selama t 116 hari seluas DPS = 441-164 = 276 juta m³
- 4) Tahun 2004 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t162 hari seluas DPS = 689-126 = 563 juta m³
- 5) Tahun 2005 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 153 hari seluas DPS = 1.237-484 = 752 juta m³
- 6) Tahun 2006 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 171 hari seluas DPS = 598-78 = 519 juta m³
- 7) Tahun 2007 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 159 hari seluas DPS = 442-110 = 332 juta m³
- 8) Tahun 2008 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 123 hari seluas DPS = 514-202 = 312 juta m³
- 9) Tahun 2009 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 135 hari seluas DPS = 1.146-679 = 467 juta m³
- 10) Tahun 2010 di dapat imbuhan tanah = volume groundwater storage yang diluah keluar selama t 47 hari seluas DPS = 421-133= 287 juta m3

Dari hasil perhitungan yang dilakukan dari 3 periode dimana satu periode terdiri dari 10 tahun, yang dimulai dari tahun 1981 sampai dengan tahun 2010 didapat prosentase imbuhan air tanah terhadap luas atap sebesar 0,131 %, sedangkan prosentase dari masingmasing dapat dilihat data (Lampiran L-.1 dan L.10)

5. SARAN DAN KESIMPULAN

5.1 Kesimpulan

Dari berbagai hasil data dan analisis yang telah dibahas, maka ada beberapa kesimpulan yang diperoleh diantaranya yaitu :

 Pembangunan sarana perlindungan sumber air berupa sumur resapan, diharapkan dapat menjadi salah satu penyelesaian untuk mengatasi permasalahan kelangkaan air pada musim kemarau dan mengurangi volume air larian (run off) pada musim hujan. Kegiatan ini dapat membantu

- memberikan tambahan cadangan air dan juga mengurangi air limpahan.
- 2) Bentuk, ukuran, jumlah dan model sumur resapan dapat disesuaikan dengan kondisi daerah. Untuk menambah cadangan air, sumur resapan sebaiknya dibangun dilokasi atau disekitar sumber cadangan air atau mata air sehingga dapat berfungsi sebagai kantong air. Sedangkan untuk mengurangi volume air larian sebaiknya dibangun di permukiman penduduk.
- Babakan Madang 351.121 m² dan koefisien runoff 0,9 dengan jumlah curah hujan rata-rata pertahun yaitu 3.955,10 maka didapat volume resapannya 125.015,36 m³ Daerah Cisarua dengan luas atap 299,344 m² dan koefisien runoff 0,9 dengan jumlah curah hujan rata-rata pertahun yang yaitu 4.000 maka didapat volume resapannya $1.066.839 \text{ m}^3$ Daerah Megamendung denngan luas atap 504.923 m^2 koefisien runoff 0,9 dengan jumlah curah hujan rata-rata pertahun yaitu 5.119,90 ,dan volume resapannya 2.326.642 m³
- 4) Untuk rata-rata volume resapan dari ketiga wilayah atau daerah Babakan madang,cisarua dan Megamendung yaitu 1,172,832.14 m³.
- 5) Untuk hasil imbuhan air tanah Periode 1 tahun 1981 sampai 1990 rata-ratanya adalah 1.292.923.545,38, untuk Periode 2 tahun 1991 sampai dengan 2000 rata-ratanya yaitu 892.633.246,64 dan untuk periode 3 mulai tahun 2001 sampai dengan 2010 rata-ratanya yaitu 504.762.032,13.
- daerah Babakan madang, Cisarua dan Megamendung dan juga perhitungan imbuhan air tanah yang dilakukan dari 3 periode dimana satu periode terdiri dari 10 tahun, yang dimulai dari tahun 1981 sampai dengan tahun 2010. Dan dari hasil peritungan didapat prosentase imbuhan air tanah terhadap luas atap sebesar 0,151 %, sedangkan untuk masing-masing periode yaitu periode 1 yaitu 0,091, periode 2 yaitu 0,131, periode 3 yaitu 0,232
- 7) Dengan melihat hasil prosentase dimana tiap periode berbeda. berarti berpengaruh pada penggunaan lahan.

5.2. Saran

Saran-saran yang dapat disampaikan untuk melestarikan dan memanfaatkan sumber daya air baik jangka pendek dan jangka panjang berdasar pembahasan adalah sebagai berikut:

- 1) Sumur resapan air hujan ditempatkan pada lahan yang relatif datar
- 2) Air yang masuk ke dalam sumur resapan adalah air hujan tidak tercemar
- Penetapan sumur resapan air hujan harus mempertimbangkan keamanan bangunan sekitarnya
- 4) Harus memperhatikan peraturan daerah setempat
- 5) Hal-hal yang tidak memenuhi ketentuan ini harus disetujui Instansi yang berwenang.
- 6) Setiap rumah-rumah agar membuat

PUSTAKA

[1] Deny Juanda Puradimadja, Ir., Dr., 1999, Air Hujan Sebagai Sumber Imbuhan Airtanah dan Aplikasinya dalam Teknologi Konservasi Airtanah, Pelatihan Pengolahan Data Iklim Untuk Pengelolaan Sumberdaya Air, Jurusan Teknik Geologi ITB, Bandung

- [2] Kusnaedi Ir., 2003, Sumur Resapan untuk Perkotaan Pemukiman Perkotaan dan Pedesaan, Cetakan 7, Penebar Swadaya, Jakarta.
- [3] Peraturan Menteri Negara Lingkungan Hidup, No. 12 Tahun 2009, Tentang Pemanfaatan Air Hujan.
- [4] Bambang Soenarto, Teknis sumur injeksi untuk pengendalian banjir dan keperluan lain serta berbagai teknik ekivalen lainnya, jurnal sumber daya air Dep. PU, 2006

RIWAYAT PENULIS

- 1. *Heny Purwanti*, *ST.*, *MT*, Staf Dosen Program Studi Teknik Sipil, Fakultas Teknik Universitas Pakuan Bogor.
- 2. *Ir. Arif Mudianto.*, *MT*, Staf Dosen Program Studi Teknik Sipil, Fakultas Teknik Universitas Pakuan Bogor.