RANCANGAN DAN IMPLEMENTASI SISTEM PENGAMANAN DATA DENGAN ALGORITMA RLJNDAEL

Sri Seyyaningsih ${ }^{\text {D }}$, Sena Ramadona Cakrawijaya ${ }^{n}$
1) Program Studi Ilmu Komputer

L. PENDAHULUAN

1.1. Latar Belakang

Dalam komunikasi data, suatu metode pengamanan data dikenal dengan kriptografi (Cryplography). Kriptografi adalah seni dan ilmu untuk menjaga kemanan pesan (Yusuf Kurniawan, 2004). Kriptografi terdiri dari berbagai macam sistem sandi (Cryptosystem) yang memiliki algoritma, tujuan penggunaan dan tingkat kerahasiaan berbeda. Dalam prakteknya, menentukan algoritma kriptografi yang digunakan menjadi suatu masalah tersendiri, di sisi lain user menginginkan kemudahan baik itu dari sisi kerahasiaan, ketepatan, kecepatan maupun biaya yang murah.

Kenyataan di lapangan, proses penanganan data dengan menggunakan metode kriptografi seringkali membutuhkan waktu yang relatif lebih lama dibandingkan tanpa proses kriptografi. Untuk itu perlu diciptakan suatu sistem sandi yang relatif cepat dalam proses penanganan data tanpa mengabaikan kaidah kerahasiaan yang ingin dicapai.

Pengamanan data tidak hanya sebatas mengupayakan agar data tersebut tidak dibaca oleh pihak yang tidak berkepentingan, tetapi juga bagaimana agar data tersebut tidak dapat dimanipulasi atau dimodifikasi, sehingga dibutuhkan suatu cara agar diperoleh otentikasi yang
meyakinkan terhadap data yang dikirimkan/disimpan. Pemilihan teknik kriptografi yang sesuai dengan kebutuhan menjadi hal penting yang harus dipertimbangkan.

Pengamanan Pengamanan file (data) menggunakan metode algoritma Rijndael dilakukan dengan memberikan masukan (input) file yang akan dienkripsi. Kemudian hasilnya (output) adalah file dengan jenis data (ekstensi) yang berbeda karena file tersebut telah terenkripsi tidak dapat ditulis atau dibaca sebelum diubah kembali (dekripsi) dengan metode algoritma yang sama.Dengan adanya proses enkripsi-dekripsi file, sebuah file diubah kebentuk chipertext yang tidak dapat dibaca sebelum diubah bentuknya kembali ke dalam bentuk plaintext. Proses enkripsi dilakukan dengan algoritma Rijndael. Penggunaan algoritma Rijndael karena memiliki fleksibilitas platform dan tingkat keamanan yang sangat baik.

Sistem pengamanan data menggunakan metode Rijndael ini dapat dikembangkan menggunakan bahasa pemrograman Visual Basic 6.0 karena kemampuan kompabilitasnya yang baik dengan sistem operasi Windows dan juga sangat efisien dalam perancangan kodekode pemrograman.

1.2. Tujuan Penclitian

Tujuan penelitian ini adalah untuk
merancang dan mengimplementasikan Sistem Pengamanan Data Dengan Algoritma Rijndael.

1.3. Ruang Lingkup

Sistem yang dibuat memiliki ruang lingkup sebagai berikut:

1. Berjalan pada sistem operasi windows xp.
2. Menggunakan ukuran blok data 128 bit.
3. Menggunakan ukuran blok kunci 128 bit.
4. Data yang dienkripsi/diamankan adalah file dokumen, file gambar, file audio dan file video.

II. METODOLOGI PENELITIAN

2.1. Kerangka Pemikiran

Ada beberapa faktor yang sering menjadi pertimbangan dalam memilih suatu metode enkripsi yang tepat, yaitu kecepatan enkripsi, sumber daya yang dibutuhkan (memori, kecepatan PC), ukuran file hasil enkripsi, besarnya dan kompleksitas algoritma. Alasan digunakannya Algoritma Rijndael Penggunaan algoritma Rijndael karena memiliki fleksibilitas platform dan tingkat keamanan yang sangat baik. Rijndael adalah algoritma yang kuat terhadap berbagai serangan yang umum diketahui seperti serangan kriptanalisis (Aulia Rahman, 2006).

2.3. Tahapan Pelaksanaan Penelitian

Tahapan pembuatan sistem ini berdasarkan metode SDLC (System Development Life Cycle), metode ini memiliki lima fase (Gambar 1).

Gambar 1. Diagram System Depelovment Life Cycle

Penelitian diawali dengan analisis, kemudian tahapan perancangan secara umum mengenai sistem yang akan dibuat, menggunakan metode Data Flow Diagram (DFD), Flowchart Sistem, perancangan ini menggambarkan sistem yang aka dibuat. Tahapan secara rinci mengenai sistem yang akan dibuat, menggunakan metode rancangan Form (UserInterface).

Gambar 2. Diagram Alir Perancangan Program

Sebagai contoh, file dokumen dengan ekstensitxt:
Plaintext : 3243 f6 a8 $885 \mathrm{5a} 308 \mathrm{~d} 3131$ 98 a 2 e 0370734
Kunci : 2b 7e 151628 ae d2 a6 ab 77 158809 cf $4 f$ 3c

Maka akan dihasilkan chipertext atau file yang telah terenkripsi dengan ekstensi file berbeda.

Ciphertext : $\mathbf{3 9} 2584$ 1d 02 dc 09 fb dc 118597196 abb 32

File terenkripsi (chipertext) didapat setelah melalui proses operasi : SubBytes, ShiftRows, MixColums, AddRoundkey.

Setelah melakukan tahapan perancangan atau desain, sistem dapat dibuat dengan menggunakan Visual Basic 6.0 IDE sebagai editor untuk membuat antar muka dan juga sebagai editor untuk kode program. Kegiatan penelitian dilanjutkan dengan uji coba sistem dan penggunaan sistem.

III.PERANCANGAN DAN IMPLEMENTASI

3.1 Analisis Masalah

Pengembangan Sistem Pengamanan Data sangat dibutuhkan bagi berbagai kalangan terutama instansi dan perusahaan yang sangat peduli akan keamanan data mereka. Oleh karena itu pemilihan algoritma Rijndael sangat tepat karena memiliki keseimbangan antar keamanan dan kemudahan dalam penggunaannya. Proses kerja dalam pengamanan data secara umum terlihat pada Gambar 3.

Gambar 3. Sistem Pengamanan Data

3.2 Perancangan Sistem

3.2.1 Pengacakan File dengan Algoritma Rijndael (Enkripsi)

Secara umum, proses enkripsi dilakukan dengan initial round yaitu
melakukan XOR antara state awal yang masih berupa plain text dengan cipher key. Kemudian melakukan keempat proses diatas sebanyak 9 kali putaran, dan terakhir adalah final round yang melibatkan proses sub bytes, shift rows, dan add round key. Adapun proses enkripsi Algoritma Rijndael ditampilkan pada Gambar 4.

Gambar 4. Proses Enkripsi Algoritma Rijndael

Proses Enkripsi file dilakukan melalui tahapan transformasi SubBytes(), ShiftRows(), MixColumns(), dan AddRoundKey(). Untuk lebih jelas dapat dilihat pseudocode pada Gambar 5 .
 begin
byte statefe Nat
stane $=$ in
AddFoundkey(state, w|O. Nb-1]
for round $=1$ step 1 to Ne-1
Suteytas(stave)
Shinfows(state)
MirCdumno(stata)
Adrkandiejs state, mpousd7b, (round+1)7b-1]
end for
Sueptes(state)
Shinflows(staib)
 out = state
end
Gambar 5. Pseudo code Enkripsi Rijndael

3.2.2 Pengembalian File kebentuk Normal (Dekripsi)

Untuk mengubah file cipher text ke bentuk semula yaitu plain text, dilakukan transformasi Inverse yaitu : InvShiftRows(), InvSubBytes(), InvMixColumns(), dan AddRoundKey().

Untuk lebih jelas dapat dilihat pseudocode Gambar 6.


```
begin
byte stale|4,Nt)
stale = in
AdNounKleg(state, wflr"Na, (Nc+1)Tb-1]
for round = F|-1 shop-1 downto 1
ImvSitfons(atste)
InwSuteytes(stab]
Adspounlkeystate, wfoundTh, (yound=1)'1b-1D
InMMrCokmns/state)
end for
InvShthlowslstate)
hvsiteyter(stite)
Ad{Poundicy(stmo, w[0. N0-1]
out = slale
and
```

Gambar 6. Pseudo code Dekripsi Rijndael

3.2.3 Perancangan Sistem Secara Umum

Rancangan sistem secara umum dapat diwakili melalui Flowehart Sistem seperti disajikan pada Gambar 7.

Gambar 7. Flowchart Sistem Pengamanan Data Dengan

3.3 Implementasi

Sistem Pengamanan Data Dengan Algoritma Rijndael diimplementasikan dengan menggunakan bahasa pemrograman Visual Basic 6.0 dengan salah satu hasil implementasi disajikan pada Gambar 8.

Gambar 8. Tampilan Pembuatan Form Splash

IV. HASIL DAN PEMBAHASAN

4.1. Hak Akses Sistem

Sistem Pengamanan Data Dengan Algoritma Rijndael yang dibangun memiliki form utama yang memberikan fasilitas utama dalam mengamankan data. Form ini memberikan kemudahan dalam pengoperasiannya, sedangkan untuk memasuki form utama harus melewati bagian form login, pengguna diwajibkan mengisi password pada form login untuk memasuki form utama.

Form Login digunakan untuk mengamankan sistem pengamanan data karena diwajibkan mengisi password pengguna untuk dapat melanjutkan ke form utama. Form Login ditampilkan pada Gambar9.

Gathval 7 . IVnim Lugm
Pada saat memasukan password ke form login, akan mencocokan input password ke dalam kode sumber yang digunakan yaitu:

4.2 Proses Enkripsi Data

Proses enkripsi data terdapat pada form utama yang berfungsi untuk mengambil input data dari user/pengguna. Form ini terdiri dari form input 'kata kunci", tombol enkripsi untuk melalukan proses pengamanan data dan tombol dekripsi untuk melalukan pengembalian file ke bentuk normal. Selain itu terdapat form about yang berisi tentang informasi Sistem Keamanan Data.

4.2.1 Input Data

Sebelum melakukan enkripsi, terlebih dahulu memasukan kunci enkripsi
agar dapat melakukan proses algoritma enkripsi. Setelah itu masukan data penting yang akan dienkripsi pada menu pilihan yang tersedia.

Pada saat tombol Enkripsi ditekan, maka akan terbuka jendela baru untuk melakukan pemilihan file data yang akan diamankan seperti diperlihatkan pada Gambar 10.

Gambar 10. Form Pemilihan Data plain text

4.2.2 Output Data

Setelah itu tentukan nama file yang baru terhadap file data yang telah diamankan tersebut. Pada saat tombol sove ditekan, maka akan dilakukan proses enkripsi dan menyimpan data yang telah terenkripsi sesuai nama file yang telah kita

Gambar 11. Form Pemberian nama data cipher text

4.2.3 Melihat Informasi File

File yang telah dienkripsi telah menjadi chiper text, bila dibandingakan dengan file awal yang berupa plain text, ternyata ukuran kedua file tidak berubah. Ukuran file dilihat dari "size on disk", sepertiterlihat pada Gambar 12.

Gambar 12. Perbandingan ukuran file plain text dan chiper text

4.3 Proses Dekripsi Data

Untuk mengembalikan file data kebentuk semula digunakan tombol dekripsi, kemudian dipilih file data yang terenkripsi yang akan dikembalikan ke kondisi plain text seperti pada Gambar 13.

Gambar 13. Form pemilihan file data chiper text

Setelah itu tentukan nama file yang baru terhadap file data yang telah dideksripsi dan telah menjadi plain text kembali.

Gambar 14. Form Pemberian nama data plain text

Pada saat tombol save ditekan, maka akan dilakukan proses dekripsi dan menyimpan data yang telah terdekripsi sesuai nama file yang telah kita tentukan.

4.4 Running Time

Pada Sistem Pengamanan Data Dengan Algoritma Rijndael dapat dilihat waktu proses enkripsi maupun dekripsi file. Informasi ini ditampilkan untuk mengetahui pengaruh perbedaan besarnya file terhadap waktu proses yang dibutuhkan.

Gambar 15. Tampilan Running Time

4.5 Uji Coba Sistem

Uji coba sistem dilakukan setelah pembuatan modul-modul sistem selesai dengan percobaan pada komputer user interface. Dengan melakukan uji coba ini dapat diketahui kekurangan sistem yang telah dibuat sebelumnya, diantaranya : apakah sistem yang dibuat sesuai dengan perancangan sistem yang dirancang, apakah penanganan berfungsi dengan baik. Berikut ini adalah beberapa pengujian yang dilakukan terhadap sistem yang dibuat.

Uji coba ini bertujuan untuk membandingkan antara data yang telah dienkripsi dengan data sebelum dienkripsi, dengan contoh input : "a" dan kata kunci
yang sama yaitu : "a" pada format file txt. Salah satu tampilan File sebelum dan setelah dienkripsi disajikan pada Gambar 16. Adapun Gambar 17 menunjukkan file bersangkutan setelah dideskripsi. Ilustrasi tersebut menunjukkan bahwa Sistem Pengamanan Data dengan Algoritma Rijndael yang dibangun sukses digunakan, dengan kondisi file setelah dideskripsi sama sepertifile awal.

Gambar 16. Isi file txt sebelum (plain text) dan sesudah dienkripsi (cipher text)

File setelah didekripsi kembali:

Gambar 17. Isi file txt sesetelah didekripsi kembali

Uji coba dilakukan juga pada file audio, video dan gambar. Contoh input file berupa file audio dipilih secara acak adalah "Bluesl.wma" dan kata kunci yaitu : "penting" pada format file wma. Contoh input file berupa file video, dan file yang dipilih : "Lucu.wmv dan kata kunci yaitu: "penting" pada format file wmu Contoh input file gambar: "Gambar.jpg dan kata kunci yaitu : "penting" pada format file jpg. Uji coba untuk ketiga jenis file tersebut menunjukkan bahwa sistem telah sukses melakukan enkripsi dan dekripsi.File sebelum dienkripsi dapat dimainkan dengan normal oleh media player untuk file audio dan video, berturutturut seperti terlihat pada Gambar 18 dan Gambar 21, kondisi terkunci setelah dienkripsi (Gambar 19 dan Gambarn 22), dan kondisi file normal kembali setelah didekripsi (Gambar 20 dan Gambar 23).

Gambar 18. File Blues1.wma dapat dimainkan dengan baik

File setelah dienkripsi:

Gambar 19. File Blues 1.wma tidak dapat dimainkan

File setelah didekripsi kembali:

Gambar 20. File Blues1.wma dapat kembali dimainkan

Gambar 21. File Lucu.wmy dapat dimainkan dengan baik

File setelah dienkripsi :
whadewn Madia Pleyer
Whobers Pheda Pleve carvot play the flec. The Flover welte net sicpout the kir tipe or nijl net icgport tie coboc thit ins uied to concran the fix.

Gambar 22. File Lucu.wmv tidak dapat dimainkan

File setelah didekripsi kembali

Gambar 23. File Lucu.wmy dapat kembali dimainkan:

File sebelum dienkripsi file dapat dilihat dengan normal oleh media gambar (Gambar 24)

Gambar 24. File Gambar.jpg dapat dilihat

File setelah dienkripsi:

Gambar 25. File Gambar.jpg tidak dapat dilihat
File setelah didekripsikembali:

Gambar 26. File Gambar.jpg dapat kembali dilihat

4.5.1 UjiCoba Struktural

Uji coba struktural adalah uji coba yang dilakukan pada saat pembuatan sistem dan memastikan kinerja dari sistem yang dibuat. Uji coba ini dilakukan dengan cara menjalankan setiap form atau menu yang telah dirancang. Jika terjadi kesalahan atau tidak berfungsi, maka proses akan kembali ke tahap implementasi. Hal ini dilakukan berulang, sampai didapat hasil yang diinginkan. Hasil uji coba struktural ditampilkan pada Tabel 1 .

Tabel 1. UjiCobaStruktural Menu Utama

No.	Sistemu	Hasil	Keterangan
I.	Menu Login	Tampil	Dijalankan dari file. exe
2.	Menu Utama	Tampil	Tampil setelah Login berhasil
3.	Enkripsi	Tampil	Dijalankan dari menu utama
4.	Dekripsi	Tampil	Dijalankan dari menu utama
5.	Lihat File	Tampil	Dijalankan dari menu utama
6.	About	Tampil	Dijalankan dari menu utama

4.5.2 UjiCoba Fungsional

Setelah memasukan password yang benar pada menu login, maka akan memasuki form utama yang berfungsi mengamankan file data dengan proses enkripsi (diamankan) dengan cara menekan tombol Enkripsi kemudian mengembalikan data kebentuk semula dengan menekan tombol dekripsi.

Tabel 10. Uji Coba Fungsional Menu Utama

No.	Form	Betton	Sub Menu	Hasil
1.	Menu Login	OK	-	Berfungsi
2.	Menu Login	Batalka n	-	Berfungsi
3.	Menu Utama	File	Enkrip si	Berfiangsi
4.	Mena Utama	File	Dekrip si	Berfungsi
5.	Menu Utama	File	Lihat File	Berfungsi
6.	Menu Utama	File	Exit	Berfungsi
7.	Menu Utama	About	-	Berfungsi
8.	Menu Utama	Enkrip si	-	Berfungsi
9.	Menu Utama	Dekrip si	-	Berfungsi

4.53 Validasi

Uji coba validasi adalah uji coba yang dimaksudkan untuk menguji lebenaran dari aplikasi yang telah dirancang dengan menggunakan Algoritma Rijndael Uji coba ini akan melakukan pengecekan terhadap file file yang akan dienkripsi dan didekripsi kembali.

V KESIMPULANDANSARAN

5.1. Kesimpulan

Pemilihan penggunaan algoritma dolam sistem pengamanan data yang tepat depat meningkatkan tingkat keamanan. Pemilihan algoritma Rijndael tepat karena sangat sulit untuk dipecahkan tanpa mengetahui kunci yang benar. Selain itu algoritma Rijndael juga mudah diimplementasikan kedalam berbagai perangkat, baik software maupun batware.

Sistem Pengamanan Data Dengan Algoritma Rijndael dapat digunakan ectugai sarana pengamanan data atau file yang handal dikarenakan memakai algoritma yang kerahasiaan kuncinya belum terpecahkan. Kerahasiaan kunci menjadi faktor penting keamanan data larena algoritma termasuk kedalam iriptographikunci simetri.

Hasil serangkaian uji coba, menunjukkan file yang tidak berubah talam ukuran data, sehingga tidak mesimbulkan masalah tempat pexyimpanan data. Waktu proses enkripsi tun dekripsi sangat singkat sehingga tidak peryulitkan pengguna Sistem Pepamanan Data Dengan Algoritma

5.2.Saran

Sistem Pengamanan Data Dengan Algoritma Rijndael ini masih dapat disempurnakan dengan melakukan penyembunyian kunci atau disebut juga data hiding, dengan begitu pengguna tidak perlu memasukan kata kunci atau password berulang kali pada saat proses dekripsi. Algoritma Rijindael juga dapat digunakan dalam bidang lain, misalnya keamanan jaringan dan keamanan data berbasis hardware atau mikrokontroler.

DAFTAR PUSTAKA

Hendra, ST, 4 Maret 2006. Dasar Pemrograman Visual Basic, hattp://wwe indoprog.com

Islab, Mei 2008. Rijndael. Http://islab.oregonstate.edu

Kuruiawan, Yusuf, 2004, Kriptografi Keamanan Internet dan Jaringan Telekomunikasi. Informatika, Bandung.

Kusumo, 2003 Visual Basic 6.0, Maxikom, Palembang

Rahman, Aulia. 15 April 2006, Studi Blok Chiper Serpent dan Rijndael, http://www.informatika.org

Wikipedia, 20 Mei 2008. Algoritma. Http://en wikipedia.orgziwiki/algo ritma him.

Wikipedia, 20 Mei 2008. AES. http:/len.wikipedia.org/wiki Advanced Encryption_Standard

Wikipedia, 20 Mei 2008. Encrypt. Http:/len. wikijedia. org/wiki/Encr

