
KOMPUTASI: JURNAL ILMIAH ILMU KOMPUTER DAN MATEMATIKA
Vol.21 (1) (2024), 83-91, p-ISSN: 693-7554, e-ISSN:2654-3990

Chaos CSPRNG Design As a Key in
Symmetric Cryptography Using

Logarithmic Functions

Hizkia Nathanael1, Alz Danny Wowor2,*

1Informatics Engineering Study Program , Faculty of Information Technology, Satya Wacana
Christian University, Central Java, 50714, Indonesia

2Department of Informatics Engineering, Faculty of Information Technology, Satya Wacana
Christian University, Salatiga, Central Java, 50714, Indonesia

Abstract

Abstract This research uses the logarithm function as a key component in generating ran-
dom numbers in the Chaos CSPRNG framework. The main problem addressed here is the
generation of keys for cryptography, recognizing the important role of cryptographic keys in
safeguarding sensitive information. By using mathematical functions, speci cally logarithmic
functions, as a key generation method, this research explores the potential for increasing the
uncertainty and strength of cryptographic keys. The proposed approach involves the system-
atic utilization of various mathematical functions to generate diverse and unpredictable data
sets. This data set, derived from the application of logarithmic functions, serves as the ba-
sis for generating random numbers. Through a series of tests such as Randomness Test and
Cryptography Test, this research shows that the data generated from these functions can be
utilized e ectively as a reliable source for generating random numbers, and has a low correla-
tion value, thereby contributing to the overall security of a symmetric cryptographic system.

Keywords: Chaos CSPRNG, Symmetric Cryptography, Logarithmic Functions

1. Introduction

The need for information security has undergone a significant transformation in the eld of
cryptography. The role of the key has become crucial and serves as a primary indicator in the design
of cryptography or information security. Therefore, the design of every algorithm needs to consider
the key generation process that is di cult to predict and can obscure plaintext and ciphertext.
Hence, algorithms need to be designed to provide robust security. Symmetric cryptography has
become a critical aspect of information security in the digital era.

Secure Pseudorandom Number Generators (CSPRNGs) are key elements in many security
applications, including data encryption and authentication. CSPRNGs generate random numbers
used as keys in various security protocols. Various methods are employed to create keys with good
quality. The use of chaos in CSPRNG is a promising approach to generate strong random numbers.
Chaos refers to the dynamic change phenomenon highly sensitive to initial conditions, appearing
random and ensuring that the algorithm adheres to Shannon’s principles.

∗Corresponding author: E-mail adress: alzdanny.wowor@uksw.edu
Received: 25 Nov 2023, Accepted: Accepted: 26 Jan 2024 and available online 30 Jan 2024
DOI: https://doi.org/10.33751/komputasi.v21i1.9265

2 METHODS 84

Many generator functions can produce CSPRNG-based random numbers, with the logistic
function f(x) = rx(1x̄) being the most famous, interatively given by xi+1 = rxi(1−xi). In research
[2] - [5], it is used as a complement in the algorithm. Research [6] tests polynomial functions of
degree-1, degree-2, and degree-3, and then transforms them into iterative functions with xed-point
iteration. This research successfully generates CSPRNG chaos-based keys. Research [7] tests
the function f(x) =x2

−9x − 99 an iterative function, resulting in CSPRNG chaos-based random
numbers with correlation levels closest to zero. Research [8] regenerates trigonometric functions
and uses them as CSPNRG chaos-based random number generators. Research [9] Implements the
cubic function f(x) = 3(x3

−x
2
−x) using xed-point iteration to generate several iterative functions

that can be used as random number generators. Research [10] regenerates constants and coe cients
of linear functions based on CSPRNG chaos, used as a Flexible S-box Design.

One interesting method for generating random numbers is using logarithmic functions. These
functions have complex properties and are challenging to invert, making them interesting candi-
dates for use in cryptographic algorithms. The use of logarithmic functions to generate random
numbers can create a series of numbers that are very di cult to predict. Current research employs
logarithmic functions as random number generators. Visualization testing using scatter plots, ran-
domness testing, and encryption processes are the testing methods to ensure that the numbers
generated by logarithmic functions can be used as random number generators.

2. Methods

The stages in the research process, as shown in Figure 1, involve initializing x0 for logarithmic
functions. In the iteration process, 200 iterations are taken and divided into 5 datasets, with
each dataset containing 3 numbers in sequential order. Testing is conducted for each dataset
to determine whether the numbers are random or non-random, proceeding to the graphical test
process.

Figure 1. Research Process Scheme

In the graphical test process, if the visualization appears non-random, the process will return to
the initialization x0. However, if it successfully shows a random visualization, the random testing
phase will continue. This random test includes three types of tests: the Run test, Mono Bit test,
and Block Bit test. If successful, the selected logarithmic function will proceed to the encryption

3 RESULT AND DISCUSSION 85

test. In the encryption test process, correlation values are used as a reference. If the correlation
value approaches zero, the function can be considered one of the good random number generators.

3. Result and Discussion

3.1. Selected Functions

Some functions that will be used for random number generation, as shown in Table 1, are listed
below.

Table 1. Fungsi Pembangkit Terpilih

No Generator Function
1 f(x) = logx2.647

2 f(x) = logx

3 f(x) = log2.647
√
x2

4 f(x) = log2.647
√
x

5 f(x) = lnx
√
x2 + 1

6 f(x) = ln
√
x

7 f(x) = lnx

The functions listed in Table 1 will be processed to generate random numbers. If a function
produces non-sequential numbers when generated for a total of n times, and the function does not
encounter errors, it will proceed to the next stages. If it passes the randomness test, then the
function can be considered as a random number generator.

The rst test uses the function f(x) = logx2.647 with x0 = 10.57. Based on Equation 1, an
iterative function is obtained. The results of the rst ten iterations are provided in Table 2.

Table 2. Results of Iteration for the Function f(x) = logx2.647

i x Data 1 Data 2 Data 3 Data 4 Data 5
1 2.710726491402760 710 726 491 402 76
2 1.146377848089250 146 377 848 089 25
3 0.157040648025306 157 040 648 025 306
4 2.128156027671230 128 156 027 671 23
5 0.868225173126667 868 225 173 126 667
6 0.162440107286225 162 440 107 286 225
7 2.089294920517260 089 294 920 517 26
8 0.847039334045419 847 039 334 045 419
9 0.190839228576645 190 839 228 576 645
10 1.904072724214620 904 072 724 214 62

Table 2 shows how to extract integers from the mantissa in the function, generating 5 data
points. This study takes three digits for each data point, considering the maximum number of
digits from the ASCII characters, which is 256 characters.

The iteration results are visualized using scatter plots in Figure 2 for the rst 200 iterations.
Then, all generated functions will be visualized with Scatter Plots for n = 200, resulting in:

3.1 Selected Functions 86

Figure 2. Results of Iteration for the Function f(x) = logx2.647

As seen in Figure 2, the values generated by the function f(x) = logx2.647 visually show that
all the data points on the Scatter Plots diagram appear to form chaos. The ve data points can be
further examined in the next stage of testing.

Figure 3. Results of Iteration for the Function f(x) = logx

As seen in Figure 3, the values generated by the function f(x) = logx visually indicate that
only data-2, data-3, data-4, and data-5 in the scatter plot diagram seem to exhibit chaos. The four
data points can be further examined in the next testing stage, but data-1 does not pass the visual
inspection. Despite the diagram generated by data-1 appearing random, it still forms a pattern.

Figure 4. Results of Iteration for the Function f(x) = log2.647
√
x

As observed in Figure 4, the values generated by the function f(x) = log2.647
√
x visually

demonstrate that all the data points in the Scatter Plots diagram appear to form chaos. The ve
data points can be further examined in the next stage of testing.

3.1 Selected Functions 87

Figure 5. Results of Iteration for the Function f(x) = log2.647
√
x

As seen in Figure 5, the values generated by the function f(x) = log2.647
√
x visually show that

all the data points in the Scatter Plots diagram appear to form chaos. The ve data points can be
further examined in the next stage of testing.

Figure 6. Results of Iteration for the Function f(x) = lnx
√
x2 + 1

As observed in Figure 6, the values generated by the function f(x) = lnx
√
x2 + 1 visually

indicate that only data-1, data-2, data-3, and data-4 in the Scatter Plot diagram seem to exhibit
chaos. The four data points can be further examined in the next testing stage, but data-5 does
not pass the visual inspection. Despite the diagram generated by data-5 appearing random, it still
forms a pattern.

Figure 7. Results of Iteration for the Function f(x) = ln
√
x

As seen in Figure 7, the values generated by the function f(x) = ln
√
x visually indicate that

only data-2, data-3, data-4, and data-5 in the Scatter Plots diagram seem to exhibit chaos. The
four data points can be further examined in the next testing stage, but data-1 does not pass the
visual inspection. Despite the diagram generated by data-1 appearing random, it still forms a
pattern.

3.2 Randomness Test 88

Figure 8. Results of Iteration for the Function f(x) = lnx

As seen in Figure 8, the values generated by the function f(x) = lnx visually show that only
data-1, data-2, data-3, and data-4 in the Scatter Plots diagram seem to exhibit chaos. The four
data points can be further examined in the next testing stage, but data-5 does not pass the visual
inspection. Despite the diagram generated by data-5 appearing random, it still forms a pattern.

3.2. Randomness Test

After being visualized with Scatter Plots generated by each function, the next step is testing
random numbers using the Run Test and Mono bit methods to determine the randomness of a
dataset. The testing is conducted with a significance level of α = 1%. The criteria for numbers
to be considered random are if the p-value is > α, and vice versa if the p-value is < α. With
x0 = 10.57, the results are as follows:

Table 3. Results of Randomness Testing on the Seven Functions

f(x) Data Run Test Mono Bit Result
log(x2.647) Data 2 0.26383 0.16563 random
log(x2.647) Data 3 0.84745 0.10740 random
log(x2.647) Data 4 0.24492 0.37857 random
log(x) Data 2 0.96908 0.01226 random
log(x) Data 3 0.47975 0.01079 random
log(x) Data 4 0.01079 0.47975 random
log(2.647

√
x2) Data 2 0.79121 0.68732 random

log(2.647
√
x2) Data 3 0.22638 0.75424 random

log(2.647
√
x2) Data 4 0.75318 0.15240 random

log(2.647
√
x) Data 2 0.35069 0.12837 random

log(2.647
√
x) Data 4 0.15486 0.21049 random

log(2.647
√
x) Data 5 0.11335 0.54511 random

ln(x
√
x2 + 1 Data 1 0.34508 0.13999 random

ln(x
√
x2 + 1 Data 2 0.21411 0.02004 random

ln(x
√
x2 + 1 Data 3 0.85438 0.17971 random

ln(x
√
x2 + 1 Data 4 0.15410 0.19465 random

ln(
√
x) Data 2 0.25591 0.97987 random

ln(
√
x) Data 3 0.25591 0.97987 random

ln(
√
x) Data 4 0.93898 0.44709 random

ln(x) Data 1 0.64102 0.02842 random
ln(x) Data 2 0.50258 0.15240 random
ln(x) Data 3 0.17850 0.68732 random
ln(x) Data 4 0.53113 0.92873 random

In Table 3, the results of the Run Test and Mono Bit testing for iterative functions are presented.
Among the seven functions, only a few data points obtained random results in the Run Test
and Mono Bit tests, making them potential candidates for e cient key generation in securing
information.

3.3 Cryptography Test 89

3.3. Cryptography Test

This test is conducted in two parts. The rst part involves the correlation test between plaintext
and ciphertext. The second part is the butter y e ect test, where we observe whether small changes
in the initialization x0 result in signi cant changes in the ciphertext. This test aims to assess how
well the key plays a role in obscuring the ciphertext.

Each iteration function that produces random numbers is used as a key. The test is conducted
through the encryption process.

Ek : P + K = C (mod 256)

The ciphertext FTI UKSW Salatiga. is taken, and a key block size of 256 bits or equivalent
to 32 characters is used. Testing was performed based on the research in [6], which has become a
random number based on CSPRNG chaos to be used as a key. Thus, the key is 32 characters from
each data, and encryption operations are performed based on the seven selected functions, testing
the correlation between plaintext and ciphertext. The results of each test are provided in Table 4.

Correlation testing can be used to assess the strength of the key in the encryption process,
determining how well the key can secure information in a block cipher. Negative or positive
correlation values are not of great concern; what matters is how close the value is to 0. The results
for all tests in Table 4 are very good, with correlation values very close to 0, whether inversely or
directly proportional.

Table 4. Correlation Value Relationship Level

f(x) Data Retrieval Correlation Result Level of Relationship
log(x2.647) Data 2 -0.0595 Very Low
log(x2.647) Data 3 0.1299 Very Low
log(x2.647) Data 4 -0.1407 Very Low
log(x) Data 2 -0.2719 Very Low
log(x) Data 3 -0.0638 Very Low
log(x) Data 4 0.4091 Moderate
log(2.647

√
x2) Data 2 -0.0214 Very Low

log(2.647
√
x2) Data 3 -0.0460 Very Low

log(2.647
√
x2) Data 4 -0.0448 Very Low

log(2.647
√
x) Data 2 -0.0518 Very Low

log(2.647
√
x) Data 4 0.0255 Very Low

log(2.647
√
x) Data 5 0.1568 Very Low

ln(x
√
x2 + 1 Data 1 -0.0059 Very Low

ln(x
√
x2 + 1 Data 2 -0.0069 Very Low

ln(x
√
x2 + 1 Data 3 0.1030 Very Low

ln(x
√
x2 + 1 Data 4 -0.0344 Very Low

ln(
√
x) Data 2 0.2387 Low

ln(
√
x) Data 3 0.3021 Low

ln(
√
x) Data 4 0.0920 Very Low

ln(x) Data 1 -0.0768 Very Low
ln(x) Data 2 0.1206 Very Low
ln(x) Data 3 -0.3287 Very Low
ln(x) Data 4 -0.2521 Very Low

Table 4 shows the results of the correlation test for each function with the value x0 = 10.57.
Based on the results in the table, some functions obtained very low correlation values. In the
function f(x) = log(x), the fourth data obtained a moderate correlation value. Meanwhile, in the
function f(x) = ln

√
x, the second and third data obtained low correlation values.

The test results indicate that functions have very low correlations, making these data suitable
for use as keys due to their random properties, making it challenging to break the key. On the

4 CONCLUSION 90

other hand, other data still exhibit bias and patterns, resulting in high correlation values, making
them easier to decrypt.

Figure 9 illustrates the butterfly effect test, using the plaintext FTI UKSW Salatiga Selamanya!
with a block size of 256 bits or equivalent to 32 characters. The simulation was performed by
selecting the function f(x) = logx, specifically for the fourth data, to be the key. The initialization
values were set to x0 = 0.054321 and x0 = 0.054322, both constants with a very small difference
of 10−6.

Figure 9. Comparison of Plaintexts and Ciphertexts FTI UKSW Salatiga Selamanya !.

In Figure 10, a retest was conducted using a different plaintext and combining numbers and
symbols: ‘ft1 uk$w $@L@t19@ $3l@m@ny@ 1, The tests were performed with the same block size
and initialization value, resulting in a noticeable difference between the two.

Figure 10. Comparison of Plaintexts and Ciphertexts ‘ft1 uk$w $@L@t19@ $3l@m@ny@ 1,

In Figure 11, a retest was conducted using the same plaintext, with only one character being
different: rrrrrrrsrrrrrrrrrrrrrrrrrrrrrrrrrrrr. Both tests were performed with the same block size
and initialization value, resulting in a noticeable difference between the two.

Figure 11. Comparison of Plaintexts and Ciphertexts rrrrrrrsrrrrrrrrrrrrrrrrrrrrrrrrrrrr

The results of the tests are presented in Cartesian coordinates for plaintext and ciphertext, as
shown in Figures 9 − 11. A small difference in the initialization value, on the order of 10 - 6 for
the function f(x) = log(x), can result in significantly different ciphertexts. This outcome indicates
that logarithmic functions can exhibit the butterfly effect, where small changes in the input of the
generator function can lead to substantial changes in the generated ciphertext.

4. Conclusion

Based on the research results, the number generator in regular logarithmic and natural logarith-
mic functions appears to produce both random and non-random numbers in the main iterations,

5 ACKNOWLEDGEMENT 91

which can be observed visually. Some functions seem to form a pattern; therefore, the numbers are
divided into several parts, namely data 1, data 2, data 3, data 4, and data 5. This division is done
because there is a possibility that some data can generate random numbers. The Run Test, Mono
Bit Test, and Block Bit Test indicate that some data successfully generate random numbers.

Correlation tests conducted on the functions f(x) = log(x), especially data-4, and f(x) = ln
√
x,

especially data-2 and data-3, resulted in an average correlation close to zero, indicating a low
correlation category. This suggests that the use of these functions as regenerators is statistically
unrelated in generating plaintext and ciphertext.

5. Acknowledgement

I would like to express my deepest gratitude to my parents for their unwavering support through-
out my academic journey. Their love, encouragement, and sacrifices have been the driving force
behind my success. I am truly grateful for everything they have done for me.

References

[1] A. Biryukov, J. Daemen, S. Lucks, and S. Vaudenay, Topics and Research Directions for
Symmetric Cryptography, Early Symmetric Crypto workshop, 2017. [Online]. Available:
https://orbilu.uni.lu/handle/10993/30953

[2] Sol s-S nchez, H., and Barrantes E.G., Using the Logistic Coupled Map for Public Key
Cryptography under a Distributed Dynamics Encryption Scheme, Information, vol. 9, no. 7,
pp. 1 12, 2018.

[3] Wowor, A.D. and V. B. Liwandouw, Domain Examination of Chaos Logistich Function As A
Key Operator in Cryptography, International Journal of Electrical and Computer Engineer-
ing, Vol. 8, No. 6, pp. 4577-4583, 2018.

[4] Lawnik, M., Generalized Logistic Map and its Application in Chaos Based Cryptography, J.
Phys. Conf, Ser., Vol. 936, No. 1, 2017.

[5] Ye, G., Jiao, K., Pan C., and Huang X., An E ective Framework for Chaotic Image En-
cryption Based on 3D Logistic Map, Hindawi Security and Communication Networks, Vol.
18, pp. 1-11, 2018.

[6] Wowor. A.D , Regenerasi Fungsi Polinomial Dalam Rancangan Algoritma Berbasis CSP-
NRG Chaos Sebagai Pembangkit Kunci Pada Kriptogra Block Cipher, Limits: Journal Of
Mathematics And Its Applications,Vol. 14: pp. 1-15, 2017.

[7] Lihananto, D, "Regenerasi Fungsi dalam Pembangkit Bilangan Acak Berbasis CSRPNG
Chaos," AITI, Vol. 16, No. 2, pp. 125 134, 2020.

[8] Paraditasari, K. and Wowor, A.D, "Desain Pembangkit Kunci Block Cipher Berbasis Csprng
Chaos Menggunakan Fungsi Trigonometri, Jurnal Ilmiah Penelitian Dan Pembelajaran In-
formatika, Vol. 6 : pp 400-405, 2021.

[9] Yopeng, M. R, and Wowor, A.D, The Implementation of f (x) = 3(x3 x2 x)+2 as CSPRNG
Chaos-Based Random Number Generator, Indonesian Journal on Computing, Vol. 6, No.
April, pp. 41 52, 2021.

[10] B. Susanto, A. D. Wowor, and V. B. Liwandouw, Desain S-Box Fleksibel: Regenerasi Kon-
stanta dan Koe sien Fungsi Linier Berbasis CSPRNG Chaos, Jurnal Nasional Teknik Elektro
dan Teknologi Informasi (JNTETI), Vol. 8, No. 1, pp. 7, 2019.

	Introduction
	Methods
	Result and Discussion
	Selected Functions
	Randomness Test
	Cryptography Test

	Conclusion
	Acknowledgement

