Classification of Heart Disease Diagnoses Using Gaussian Naïve Bayes

Ibnu Akil, Indra Chaidir

Abstract


Machine learning, which is part of artificial intelligence, has been widely applied in various fields, especially the medical field. Machine learning helps doctors make more accurate diagnoses. Heart disease is one of the highest causes of death in the world, so the need for accurate diagnosis is absolute for this disease. There are many algorithms that have been applied in machine learning to classify and detect heart disease, such as Linear Discriminant Analysis [1], KNN, Decision Tree, Random Forest [2], and Logistic Regression [3]. One classification algorithm that has not been implemented is Gaussian Naive Bayes. So, in this research the Gaussian Naive Bayes algorithm will be tested on the cardio health risk assessment dataset. From the research results of applying the Gaussian Naive Bayes algorithm to cardio health risk assessment data, accuracy was 0.87%, precision was 0.88%, recall was 0.90%, and f1-score was 0.89%.

Keywords


artificial intelligence; machine learning; gaussian naïve bayes; heart disease diagnoses; classification algorithm

References


R. R. Isnanto, I. Rashad, and C. Edi Widodo, “Classification of Heart Disease Using Linear Discriminant Analysis Algorithm,” E3S Web Conf., vol. 448, pp. 1–11, 2023, doi: 10.1051/e3sconf/202344802053.

L. A. Dewi, “Klasifikasi Machine Learning Untuk Mendeteksi Penyakit Jantung Dengan Algoritma KNN, Decision Tree dan Random Forest,” UIN Syarif Hidayatullah, 2023.

J. J. Pangaribuan, H. Tanjaya, and K. Kenichi, “Mendeteksi Penyakit Jantung Menggunakan Machine Learning Dengan Algoritma Logistic Regression,” J. Inf. Syst. Dev., vol. 06, no. 02, pp. 1–10, 2021.

A. Ahmadi and N. R. Ganji, “AI-Driven Medical Innovations : Transforming Healthcare through Data Intelligence,” Int. J. BioLife Sci., vol. 2, no. 2, pp. 132–142, 2023.

M. Gallego, A. Berman, and M. Crispin, “Artificial intelligence in healthcare: A technological perspective,” Innov. Sustain. Futur. Healthc., 2020.

T. A. Mylano, “Mengenal Penyakit Jantung Koroner, Penyebab Kematian Tertinggi di Dunia,” www.siloamhospitals.com, 2024. https://www.siloamhospitals.com/informasi-siloam/artikel/mengenal-penyakit-jantung-koroner-penyebab-kematian-tertinggi-di-dunia (accessed Jun. 09, 2024).

T. Suryadi, “Kematian Mendadak Kardiovaskuler,” J. Kedokt. Syiah Kuala, vol. 17, no. 2, pp. 112–118, 2017, doi: 10.24815/jks.v17i2.8990.

M. Abdar, S. R. N. Kalhori, T. Sutikno, I. M. I. Subroto, and G. Arji, “Comparing performance of data mining algorithms in prediction heart diseses,” Int. J. Electr. Comput. Eng., vol. 5, no. 6, pp. 1569–1576, 2015, doi: 10.11591/ijece.v5i6.pp1569-1576.

N. M. Ratminingsih, “Penelitian Eksperimental Dalam Pembelajaran Bahasa Kedua,” Prasi, vol. 6, no. 11, pp. 31–40, 2010.

I. As’ad, “Advancing Healthcare Diagnostics: A Study on Gaussian Naive Bayes Classification of Blood Samples,” Int. J. Artif. Intell. Med. Issues, vol. 1, no. 2, pp. 115–123, 2023, doi: 10.56705/ijaimi.v1i2.120.

I. Ovyawan Herlistiono and S. Violina, “Naïve Bayes Binary Classification for Film Review,” no. 204, 2020.

A. Bhandari, “Confusion Matrix in Machine Learning,” www.analyticsvidhya.com, 2024. https://www.analyticsvidhya.com/blog/2020/04/confusion-matrix-machine-learning/ (accessed Jun. 15, 2024).

M. S. Anggreany, “Confusion Matrix,” www.socs.binus.ac.id, 2020. https://socs.binus.ac.id/2020/11/01/confusion-matrix/ (accessed Jun. 15, 2024).


Full Text: PDF

DOI: 10.33751/komputasi.v21i2.10114 Abstract views : 94 views : 65

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.