SENTIMENT ANALYSIS OF ONLINE LOANS ON TWITTER USING LEXICON BASED METHODS AND SUPPORT VECTOR MACHINE (SVM)
Abstract
Technological developments are increasingly rapid and moving towards digital, which in the end technology can also help people who are experiencing economic problems, namely with online loan services. Even though there are many conveniences provided by online loan services, of course not all people give positive comments because there are quite a few negative comments about this service.One of the social media that is widely used by the public to provide comments about online loans is Twitter. Sentiment analysis is a data processing process to obtain information about whether an opinion sentence tends to be positive, negative or even neutral. This research contains sentiment analysis towards Online Loans on Twitter using the Lexicon Based and Support Vector Machine methods. From the results of this research, the accuracy for SVM was 82.36%. From these results it can be concluded that the use of the Lexicon Based and Support Vector Machine methods is considered quite good and effective for classifying sentiment
References
Utami, D.S. & Erfina, A. 2021. Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM). Seminar Nasional Sistem Informasi dan Manajemen Informatika. 299-305
Zuhdi, A.M., Utami, E. & Raharjo, S. 2019. Analisis Sentimen Twitter Terhadap Capres Indonesia 2019 Dengan Metode K-NN. Jurnal INFORMA Politeknik Indonusa Surakarta. 5(2) : 1-7.
Mahendrajaya, R., Buntoro, G.A. & Setyawan, M.B. 2019. Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based dan Support Vector Machine. Jurnal Teknik Universitas Muhammadiyah Ponorogo. 3(2) : 52-63.
Herlambang, M.B. 2019. Machine Learning: Support Vector Machines. https://www.megabagus.id/machine-learning-support-vector-machines/. 03 Maret 2022.
Ipmawati, J., Kusrini & Luthi, E.T. 2017. Komparasi Teknik Klasifikasi Teks Mining Pada Analisis Sentimen. Indonesian Journal on Networking and Security. 6(1) : 28-36.
Buntoro, G.A. 2017. Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter. Integer Journal. 2(1) : 32-41.
Anggreany, M.S. 2020. Confusion Matrix. https://socs.binus.ac.id/2020/11/01/confusion-matrix/. 11 Oktober 2021
Rofiqoh, U., Perdana, R.S. & Fauzi, M.A. 2017. Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler Indonedia Pada Twitter Dengan Metode Support Vector Machine dan Lexicon Based Features. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 1(12) : 1725-1732.
Mahayani, I., Agushinta, D. & Supriyadi, M.E. 2020. Analisis Sentimen Twitter Terhadap Pembayaran ShopeePayLater Pada Aplikasi Belanja Online (Shopee) Menggunakan Metode Lexicon Based dan Naive Bayes Classifier. Jurnal Ilmiah KOMPUTASI. 19(4) : 545-558.
Yunus, M. 2020. TF-IDF (Term Frequency-Inverse Document Frequency) : Representasi Vector Data Text. https://yunusmuhammad007.medium.com/tf-idf-term-frequency-inverse-document-frequency-representasi-vector-data-text-2a4eff56cda. 10 Maret 2022
Ramadhan, D.A. & Setiawan, E.B. 2019. Analisis Sentimen Program Acara di SCTV Pada Twitter Menggunakan Metode Naive Bayes dan Support Vector Machine. e-Proceeding of Engineering. 6(2) : 9736-9743.
Mardi, Y. 2016. Data Mining : Klasifikasi Menggunakan Algoritma C4.5. Jurnal Edik Informatika. 2(2) : 213-219.
Statiswaty, Rusnia & Ransi, N. 2017. Analisis Sentimen Wisata Bahari Di Sulawesi Tenggara Memanfaatkan Media Sosial Twitter Dengan Menggunakan Metode Lexicon-Based. 3(2) : 161-168.
Jumeilah, F.S. 2017. Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian. Jurnal Rekayasa Sistem dan Teknologi Informasi. 1(1) : 19-25.
Syaifudin, Y.W. & Irawan, R.A. 2018. Implementasi Analisis Clustering Dan Sentimen Data Twitter Pada Opini Wisata Pantai Menggunakan Metode K-Means. Jurnal Informatika Polinema. 4(3) : 189-194.
DOI: 10.33751/komputasi.v21i2.10125 Abstract views : 48 views : 31
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.