ELEMEN IDEMPOTEN DI GELANGGANG Z_n DAN KAITANNYA DENGAN HOMOMORFISMA GELANGGANG
Abstract
Keywords
References
Miller CC. Essentials of Modern Algebra, 2nd Edition. Herndon, VA: Mercury Learning & Information. 2019.
Stein W. Elementary Number Theory: Primes, Congruences and Secrets, A Computational Approach. Berlin: Springer-Verlag, 2008.
Wahyuni S, Wijayanti IE, Yuwaningsih DA, Hartanto AD. Teori Ring dan Modul. Yogyakarta: Gadjah Mada University Press. 2016.
Wisbauer R. Foundation of Module and Ring Theory. Philadelphia: Gordon and Breach. 1991.
Azami J. 2019. A Short Note on Idempotent Rings. Italian Journal of Pure and Applied Mathematics. 41: 65-69.
de Melo Hernandez FD, Hernandez Melo CA, Tapia-Recillas H. 2020. On Idempotents of A Class of Commutative Rings. Communications in Algebra. 48(9): 4013-4026.
Kose H, Ungor B, Harmanci A. 2019. Semicommutativity of Rings by the Way of Idempotents. Filomat. 33(11): 3497-3508.
Porubsky S. 2018. Idempotents, Group Membership and Their Applications. Mathematica Slovaca. 68(6): 1231-1312.
Chen FY, Hagan H, Wang A. 2019. On Skew Polynomial Rings over Locally Nilpotent Rings. Communications in Algebra. 47(3): 1102-1104.
De Filippis V, Shujat F, Khan S. 2019. Generalized Derivations with Nilpotent, Power-central, and Invertible Values in Prime and Semiprime Rings. Communications in Algebra. 47(8): 3025-3039.
Hashemi E, Hamidizadeh M, Alhevaz A. 2019. On Clean and Regular Elements of Noncommutative Ring Extensions. Communications in Algebra. 47(4): 1650-1661.
Hashemi E, Yazdanfar M. 2019. On Clean and Nil Clean Elements in Skew T.U.P. Monoid Rings. Bulletin of the Korean Mathematical Society. 56(1): 57-71.
Ferreira BLM, Ferreira RN, Guzzo H. 2020. Generalized Jordan Derivations on Semiprime Rings. Journal of the Australian Mathematical Society. 109(1): 36-43.
Hryniewicka ME, Jastrzebska M. 2019. On Some Generalizations of the Reversibility in Nonunital Rings. Journal of the Korean Mathematical Society. 56(2): 289-309.
Kimball CF, LaGrange JD. 2018. The Idempotent-divisor Graphs of A Commutative Ring. Communications in Algebra. 46(9): 3899-3912.
DOI: 10.33751/komputasi.v18i1.2326


Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.