PENYELESAIAN MODEL EPIDEMI SIR MENGGUNAKAN METODE RUNGE-KUTTA ORDE EMPAT DAN METODE ADAMS-BASHFORTH-MOULTON

Laurensius Ian Setiawan, Sudi Mungkasi

Abstract


Model epidemi SIR (Susceptible-Infected-Recovered) telah diterapkan secara luas untuk simulasi penyebaran penyakit menular. Makalah ini menyajikan skema numeris metode Runge-Kutta orde empat dan metode Adams-Bashforth-Moulton untuk menyelesaikan model SIR. Lebih lanjut, makalah ini menyajikan penyelesaian model SIR yang dihasilkan dengan simulasi komputer. Hasil simulasi atas kedua metode tersebut memberikan rata-rata nilai mutlak selisih yang sangat kecil. Dengan demikian, skema numeris dan hasil simulasi dalam makalah ini dapat dipercaya kebenarannya. Dalam melakukan simulasi penyebaran penyakit menular, penggunaan dua metode yang berbeda disarankan agar hasil simulasi diyakini benar.

Keywords


model epidemi SIR; metode Runge-Kutta orde empat; metode Adams-Bashforth-Moulton; simulasi numeris; penyebaran penyakit

References


Setiawan, L.I. 2021. Kajian numeris dan aspek pendidikan dari penyelesaian model Susceptible-Infected-Recovered penyebaran penyakit virus Corona 2019 (COVID-19). Tesis Magister Pendidikan Matematika. Yogyakarta: Universitas Sanata Dharma.

Yang, M., Fang, H., Wang, F., Jia, H., Lei, J., Zhang, D. 2019. The three dimension first-order symplectic partitioned Runge-Kutta scheme simulation for GPR wave propagation in pavement structure. IEEE Access. 7: 151705-151712.

Aksim, D., Pavlov, D. 2020. On the extension of AdamsBashforthMoulton methods for numerical integration of delay differential equations and application to the moons orbit. Mathematics in Computer Science. 14: 103-109.

Pratiwi, C.D., Mungkasi, S. 2021. Eulers and Heuns numerical solutions to a mathematical model of the spread of COVID-19. AIP Conference Proceedings. 2353(1): 030110.

Simangunsong, L., Mungkasi, S. 2021. Fourth order Runge-Kutta method for solving a mathematical model of the spread of HIV-AIDS. AIP Conference Proceedings. 2353(1): 030092.

Nugroho, B., Denih, A. 2020. Perbandingan kinerja metode pra-pemrosesan dalam pengklasifikasian otomatis dokumen paten. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika. 17(2): 381-387.

Ulfha, N.F., Amin, R. 2020. Implementasi data mining untuk mengetahui pola pembelian obat menggunakan algoritma apriori. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika. 17(2): 396-402.

Dewi, N.P.N.P., Nugroho, R.A. 2021. Optimasi general regression neural network dengan fruit fly optimization algorithm untuk prediksi pemakaian arus listrik pada penyulang. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika. 18(1): 1-12.

Saepulrohman, A., Negara, T.P. 2021. Implementasi algoritma tanda tangan digital berbasis kriptografi kurva eliptik Diffie-Hellman. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika. 18(1): 22-28.

Mungkasi, S. 2021. Variational iteration and successive approximation methods for a SIR epidemic model with constant vaccination strategy. Applied Mathematical Modelling. 90: 1-10.

Mungkasi, S. 2020. Improved variational iteration solutions to the SIR model of dengue fever disease for the case of South Sulawesi. Journal of Mathematical and Fundamental Sciences. 52(3): 297-311.

Mungkasi, S. 2020. Successive approximation, variational iteration, and multistage-analytical methods for a SEIR model of infectious disease involving vaccination strategy. Communication in Biomathematical Sciences. 3(2): 114-126.

Karaszen, B. 1998. Runge-Kutta methods for hamiltonian systems in non-standard symplectic two-form. International Journal of Computer Mathematics. 66(1-2): 113-122.

Guan, L., Shen, J. 2018. Bifurcation analysis about a mathematical model of somitogenesis based on the RungeKutta method. Wireless Personal Communications. 103: 221-230.

Lede, Y.K., Mungkasi, S. 2019. Performance of the Runge-Kutta methods in solving a mathematical model for the spread of dengue fever disease. AIP Conference Proceedings. 2202(1): 020044.

Kovalnogov, V.N., Simos, T.E., Tsitouras, C. 2021. RungeKutta pairs suited for SIR-type epidemic models. Mathematical Methods in the Applied Sciences. 44(6): 5210-5216.

Tutueva, A., Karimov, T., Butusov, D. 2020. Semi-implicit and semi-explicit Adams-Bashforth-Moulton methods. Mathematics. 8(5): 780.

Kumar, S., Kumar, R., Agarwal, R.P., Samet, B. 2020. A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods. Mathematical Methods in the Applied Sciences. 43(8): 5564-5578.

Wang, D., Dong, S., Ning, M., Incecik, A. 2021. Extended variable-time-step AdamsBashforthMoulton method for strongly coupled fluidstructure interaction simulation. Ocean Engineering. 219: 108335.

Khader, M.M. 2021. Using the generalized Adams-Bashforth-Moulton method for obtaining the numerical solution of some variable-order fractional dynamical models. International Journal of Nonlinear Sciences and Numerical Simulation. 22(1): 93-98.

Agarwal, P., Singh, R., ul Rehman, A. 2021. Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via AdamBashforthMoulton predictor-corrector scheme. Chaos, Solitons & Fractals. 143: 110564.


Full Text: PDF

DOI: 10.33751/komputasi.v18i2.3623 Abstract views : 2112 views : 1841

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.