Sentiment Analysis of Opinions on the Use of Devices in Students Using the Support Vector Machine (SVM) Method
Abstract
Sentiment Analysis is a field of science in analyzing a sentiment or opinion on a particular object or problem and the opinion can be divided into several purposes (classes) that lead to negative, neutral or positive opinions. Gadgets (gadgets) are human aids in many fields including work, entertainment, communication and information, the use of gadgets themselves encompasses all ages including school students who use gadgets excessively that affect the mental, physical and attitudes of users. Twitter social media is one of the social media that is used by the public in making opinions about the influence of gadgets, especially parents, these opinions are useful for other users in determining the granting of access rights and direction for children, especially students in using gadgets. Opinion classification is needed in making it easier for other users to see whether opinions from the influence of gadgets fall into the negative, neutral or positive classes. The method used in the classification of opinion is Support Vector Machine (SVM). The data used in this study amounted to 1354 taken in 2019 using web scraping techniques on the Twitter site which are then pre-processed so that it can be processed into the program and classified into 3 classes of sentiments, namely negative, neutral and positive sentiments. In finding the average value of accuracy in the distribution of training data and test data using k-fold cross validation of 10-fold produces an average value of 85.3%. Then testing is done to measure the performance of the SVM method using confusion matrix in the percentage of training data and different test data and produces the highest accuracy value of 83.3%.
Keywords
References
Chusna A.P. 2017. Pengaruh Media Gadget Pada Perkembangan Karakter Anak. Jurnal Media Komunikasi Sosial Keagamaan. 17(2): 1-16.
Novitasari .W, Khotimah .N. 2016. Dampak Penggunaan Gadget Terhadap Interaksi Sosial Anak Usia 5-6 Tahun. Jurnal PAUD Teratai. 2(3):182-186.
Doni R.F. 2017. Perilaku Penggunaan Media Sosial Pada Kalangan Remaja. Indonesian Journal on Software Engineering IJSE. 3(2): 1-9.
Witarsa R. Hadi M.S.R. Nurhananik. Haerani R.N. 2018. Pengaruh Gadget Terhadap Kemampuan Interaksi Sosial Siswa Sekolah Dasar. Jurnal PEDAGOGIK. 6(1): 1-10.
Fitri .S. 2017. Dampak Positif dan Negatif Sosial Media Terhadap Perubahan Sosial Anak. Jurnal Kajian Penelitian Pendidikan dan Pembelajaran. 1(2):118-123
Soenarto. Zaini .M . 2019. Persepsi Orangtua Terhadap Hadirnya Era Teknologi Digital di Kalangan Anak Usia Dini. Jurnal Pendidikan Anak Usia Dini. 3(1):254-264
Sahriana .N . 2019. Pentingnya Peran Orangtua Dalam Penggunaan Gadget Pada Anak Usia Dini. Jurnal Smart PAUD. 2(1):60-66
Suyanto. 2017. Data Mining Untuk Klasifikasi dan Klasterisasi Data, Bandung: Informatika Bandung,
M. Turland, PHP-Architects Guide to Web Scraping. Marco Tabini & Associates, 2010.
Kurniawati W. A. 2017. Implementasi Metode Support Vector Machine Untuk Identifikasi Penyakut Daun Tanaman Kubis. Skripsi. Politeknik Negeri Malang.
DOI: 10.33751/komputasi.v20i1.6558


Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution 4.0 International License.