Chaos CSPRNG Design As a Key in Symmetric Cryptography Using Logarithmic Functions

Hizkia Nathanael, Alz Danny Wowor


 This research uses the logarithm function as a key component in generating random numbers in the Chaos CSPRNG framework. The main problem addressed here is the generation of keys for cryptography, recognizing the important role of cryptographic keys in safeguarding sensitive information. By using mathematical functions, specifically logarithmic functions, as a key generation method, this research explores the potential for increasing the uncertainty and strength of cryptographic keys.

The proposed approach involves the systematic utilization of various mathematical functions to generate diverse and unpredictable data sets. This data set, derived from the application of logarithmic functions, serves as the basis for generating random numbers. Through a series of tests such as Randomness Test and Cryptography Test, this research shows that the data generated from these functions can be utilized effectively as a reliable source for generating random numbers, and has a low correlation value, thereby contributing to the overall security of a symmetric cryptographic system.


Chos CSPRNG; Symmetric Cryptography; Logarithmic Functions.


A. Biryukov, J. Daemen, S. Lucks, and S. Vaudenay, “Topics and Research Directions for Symmetric Cryptography,” 2017.

H. Solís-Sánchez and E. G. Barrantes, “Using the logistic coupled map for public key cryptography under a distributed dynamics encryption scheme,” Inf., vol. 9, no. 7, pp. 1–12, 2018, doi: 10.3390/info9070160.

A. D. Wowor and V. B. Liwandouw, “Domain examination of chaos logistics function as a key generator in cryptography,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, pp. 4577–4583, 2018, doi: 10.11591/ijece.v8i6.pp4577-4583.

M. Lawnik, “Generalized logistic map and its application in chaos based cryptography,” J. Phys. Conf. Ser., vol. 936, no. 1, 2017, doi: 10.1088/1742-6596/936/1/012017.

G. Ye, K. Jiao, C. Pan, and X. Huang, “An effective framework for chaotic image encryption based on 3D logistic map,” Secur. Commun. Networks, vol. 2018, 2018, doi: 10.1155/2018/8402578.

A. D. Wowor, “Regenerasi Fungsi Polinomial Dalam Rancangan Algoritma Berbasis CSPNRG Chaos Sebagai Pembangkit Kunci Pada Kriptografi Block Cipher,” Limits J. Math. Its Appl., vol. 14, no. 1, p. 1, 2017, doi: 10.12962/limits.v14i1.2169.

D. Lihananto and A. D. Wowor, “Regenerasi Fungsi x2-9x-99 Dalam Pembangkit Bilangan Acak Berbasis CSRPNG Chaos,” Aiti, vol. 16, no. 2, pp. 125–134, 2020, doi: 10.24246/aiti.v16i2.125-134.

K. Paraditasari and A. Danny Wowor, “Desain Pembangkit Kunci Block Cipher Berbasis Csprng Chaos Menggunakan Fungsi Trigonometri,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 2, pp. 400–405, 2021, doi: 10.29100/jipi.v6i2.2115.

M. R. Yopeng and A. D. Wowor, “Implementation of f(x) = 3(x3 x2 x) + 2 CSPRNG Chaos-Based Random Number Generator,” Ind. J. Comput., vol. 6, no. April, pp. 41–52, 2021, doi: 10.34818/indojc.2021.6.1.546.

B. Susanto, A. D. Wowor, and V. B. Liwandouw, “Desain S-Box Fleksibel: Regenerasi Konstanta dan Koefisien Fungsi Linier Berbasis CSPRNG Chaos,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 1, p. 7, 2019, doi: 10.22146/jnteti.v8i1.484.

Full Text: PDF

DOI: 10.33751/komputasi.v21i1.9265 Abstract views : 59 views : 34


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.