Linear Kernel Optimization of Support Vector Machine Algorithm on Online Marketplace Sentiment Analysis

Fiki Andrianto, Abdul Fadlil, Imam Riadi

Abstract


Twitter is a short message platform commonly used as a means of news information, commentary, and social interaction. One of the utilization of twitter is to analyze the sentiment of the online marketplace which can be used to determine the service, quality of goods, and delivery of goods on a product, service or application. This research aims to categorize the reviews or responses of the Indonesian people, especially to the online marketplace using the linear Support Vector Machine (SVM) algorithm. In order to make continuous improvements to the role of the Indonesian online marketplace in the future, sentiment analysis is needed. The analysis research tweets used were 4165 datasets using the python programming language. Sentiment analysis research stages include data collection, preprocessing, labeling, tf-idf weighting, split data, SVM model analysis and result evaluation. The data is then divided into 80% training data and 20% testing data, 50% training data and 50% testing data, 20% training data and 80% testing data. The results of the svm algorithm testing scenario obtained the highest optimization with an accuracy value of 97%, F1-score value on positive labels 88% and negative 98%, also obtained a positive recall value of 80% and negative 100% precision value on positive labels 98% and negative 97%, on 80% training data and 20% testing. It can be concluded that in this case, the linear svm algorithm is able to work to recognize models with a high level of accuracy so that in the future it can be used in similar cases.

References


Similarweb, “Top Websites Ranking Most Visited Marketplace Websites in Indonesia,” 2023. https://www.similarweb.com/top-websites/indonesia/e-commerce-and-shopping/marketplace/ (accessed Aug. 15, 2023).

J. Winahyu and I. Suharjo, “Aplikasi Web Analisis Sentimen Dengan Algoritma Multinomial Naïve Bayes,” KARMAPATI, vol. 10, pp. 206–214, 2021.

Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” J. Inf. Syst. Manag., vol. 3, no. 2, pp. 44–49, 2021, doi: 10.24076/joism.2021v3i2.558.

R. H. Muhammadi, T. G. Laksana, and A. B. Arifa, “Combination of Support Vector Machine and Lexicon-Based Algorithm in Twitter Sentiment Analysis,” Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 8, no. 1, pp. 59–71, 2022, doi: 10.23917/khif.v8i1.15213.

A. M. Pravina, I. Cholissodin, and P. P. Adikara, “Analisis Sentimen Tentang Opini Maskapai Penerbangan pada Dokumen Twitter Menggunakan Algoritme Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2789–2797, 2019, [Online]. Available: http://j-ptiik.ub.ac.id

F. Al Isfahani and R. Mubarok, “Analisis Sentimen Pengguna Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Sosial Berskala Besar ( Psbb ) Dengan Metode Naïve Bayes,” siliwangi, vol. 7, no. 1, pp. 19–24, 2021.

D. A. Fitri and A. Putri, “Analisis sentimen pengguna aplikasi googlemeet menggunakan algoritma support vector machine,” CoSciTech (Jurnal Comput. Sci. Inf. Technol., vol. 3, no. 3, pp. 472–478, 2022.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine ( Svm ),” urnal Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, pp. 147–156, 2021, doi: 10.25126/jtiik.202183944.

V. Kevin, S. Que, A. Iriani, and H. D. Purnomo, “Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization ( Online Transportation Sentiment Analysis Using Support Vector Machine Based on Particle Swarm Optimization ),” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 2, pp. 162–170, 2020.

F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019, [Online]. Available: https://jurnal.umk.ac.id/index.php/simet/article/view/3487/1883

W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 11, pp. 4704–4713, 2018.

P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 1020, 2022, doi: 10.30865/jurikom.v9i4.4673.

M. Fahmi, A. Yudhana, and Sunardi, “Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network,” J. Ris. Komputer), vol. 10, no. 1, pp. 76–81, 2023, doi: 10.30865/jurikom.v10i1.5468.

V. Fitriyana, Lutfi Hakim, Dian Candra Rini Novitasari, and Ahmad Hanif Asyhar, “Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine,” J. Buana Inform., vol. 14, no. 01, pp. 40–49, 2023, doi: 10.24002/jbi.v14i01.6909.

I. Kurniawan et al., “Perbandingan Algoritma Naive Bayes Dan SVM Dalam Sentimen Analisis Marketplace Pada Twitter,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 10, no. 1, pp. 731–740, 2023, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/3582

A. Volume, “Analysis of the role online customer review in mediating online customer experience relationships to increase marketplace rating,” J. Econ. Bus. Account., vol. 7, no. 1, 2023.

I. Novitasari and F. Cuandra, “Analisis Faktor yang Mempengaruhi Minat Beli pada Marketplace Online di Kota Batam,” J. Inform. Ekon. Bisnis, vol. 5, pp. 339–349, 2023, doi: 10.37034/infeb.v5i2.248.

R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi Mypertamina Pada Google Play Store Menggunakan Algoritma Nbc,” J. Teknol. Terpadu Vol, vol. 7, no. 2, pp. 77–82, 2021, [Online]. Available: https://journal.nurulfikri.ac.id/index.php/jtt/article/download/318/201

T. T. Widowati and M. Sadikin, “Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 626–636, 2021, doi: 10.24176/simet.v11i2.4568.

S. H. Hardi and K. D. Hartomo, “Sentiment Analysis of Simobi Plus Mobile Application Using Naïve Bayes Classification,” J. media Inform. budidarma, vol. 7, no. 3, pp. 1117–1124, 2023, doi: 10.30865/mib.v7i3.6300.

Murni, I. Riadi, and A. Fadlil, “Analisis Sentimen Hate Speech pada Pengguna Layanan Twitter dengan Metode Naïve Bayes Classifier ( NBC ),” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 2, 2023, doi: 10.30865/jurikom.v10i2.5984.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

D. Rifaldi, A. Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet Mental Health,” J. Pendidik. Teknol. Inf., vol. 3, no. 2, pp. 161–171, 2023.

A. Z. Praghakusma and N. Charibaldi, “Komparasi Fungsi Kernel Metode Support Vector Machine untuk Analisis Sentimen Instagram dan Twitter (Studi Kasus : Komisi Pemberantasan Korupsi),” JSTIE (Jurnal Sarj. Tek. Inform., vol. 9, no. 2, p. 88, 2021, doi: 10.12928/jstie.v9i2.20181.

A. S. Nugroho, R. Umar, and A. Fadlil, “Klasifikasi Botol Plastik Menggunakan Multiclass Support Vector Machine,” J. Khatulistiwa Inform., vol. 9, no. 2, pp. 79–85, 2021, doi: 10.31294/jki.v9i2.11058.

U. Makhmudah, S. Bukhori, J. A. Putra, and B. A. B. Yudha, “Sentiment Analysis of Indonesian Homosexual Tweets Using Support Vector Machine Method,” Proc. - 2019 Int. Conf. Comput. Sci. Inf. Technol. Electr. Eng. ICOMITEE 2019, pp. 183–186, 2019, doi: 10.1109/ICOMITEE.2019.8920940.

S. Zahoor and R. Rohilla, “Twitter Sentiment Analysis Using Machine Learning Algorithms: A Case Study,” Proc. - 2020 Int. Conf. Adv. Comput. Commun. Mater. ICACCM 2020, pp. 194–199, 2020, doi: 10.1109/ICACCM50413.2020.9213011.

I. S. K. Idris, Y. A. Mustofa, and I. A. Salihi, “Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM),” Jambura J. Electr. Electron. Eng., vol. 5, no. 1, pp. 32–35, 2023, doi: 10.37905/jjeee.v5i1.16830.

A. A. Firdaus, A. Yudhana, and I. Riadi, “Sentiment Analysis on 2024 Presidential Election Projection using Support Vector Machine Method,” Decod. J. Pendidik. Teknol. Inf., vol. 3, no. 2, pp. 236–245, 2023, [Online]. Available: http://journal.umkendari.ac.id/index.php/decode

Vynska Amalia Permadi, “Analisis Sentimen Menggunakan Algoritma Naive Bayes Terhadap Review Restoran di Singapura,” J. Buana Inform., vol. 11, pp. 141–151, 2020.

N. S. Wardani, A. Prahutama, and P. Kartikasari, “Analisis Sentimen Pemindahan Ibu Kota Negara Dengan Klasifikasi Naïve Bayes Untuk Model Bernoulli Dan Multinomial,” J. Gaussian, vol. 9, no. 3, pp. 237–246, 2020, doi: 10.14710/j.gauss.v9i3.27963.

R. Umar, I. Riadi, and P. Purwono, “Klasifikasi Kinerja Programmer pada Aktivitas Media Sosial dengan Metode Stochastic Gradient Descent,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 2, p. 55, 2020, doi: 10.31328/jointecs.v5i2.1324.

M. N. Muttaqin and I. Kharisudin, “Analisis Sentimen Pada Ulasan Aplikasi Gojek Menggunakan Metode Support Vector Machine dan K Nearest Neighbor,” UNNES J. Math., vol. 10, no. 2, pp. 22–27, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm


Full Text: PDF

DOI: 10.33751/komputasi.v21i1.9266 Abstract views : 113 views : 106

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.