Analisis Volatilitas dan Forecasting Return Saham Bank Mandiri Menggunakan ARIMA-GARCH: Proyeksi 5 Bulan ke Depan

Amelia Putri, Aulia Hani, Bintang Maulana

Abstract


ANALYSIS OF VOLATILITY AND FORECASTING RETURN OF BANK MANDIRI SHARES USING ARIMA-GARCH: PROJECTIONS FOR THE NEXT 5 MONTHS

Indonesia’s capital market continues to demonstrate strong dynamics, particularly among blue-chip stocks such as PT Bank Mandiri (Persero) Tbk (BMRI), which exhibit high volatility influenced by macroeconomic variables, global conditions, and market sentiment. To obtain a more accurate projection of BMRI’s price movement, this study applies the ARIMA-GARCH model to forecast stock prices for the five-month period from November 2025 to April 2026. The dataset consists of daily closing prices from November 2020 to November 2025. Preprocessing involved handling outliers using winsorizing and conducting a stationarity test, in which the Augmented Dickey-Fuller result indicated that the return series was stationary with a p-value of 0.0000. Based on information criteria, ARIMA(0,0,1) was selected as the optimal mean model with an AIC value of –3985.7041. Volatility was subsequently modeled using GARCH(1,1) with a normal distribution, showing a persistence level of 0.8598, suggesting that BMRI volatility remains elevated and requires time to stabilize after a shock. Diagnostic tests confirmed the absence of residual autocorrelation (Ljung-Box p-value > 0.05) and no remaining ARCH effect (p-value 0.1744), validating the adequacy of the combined model. Forecasting through 1,000-iteration Monte Carlo simulation produced an average projected final price of Rp 4,960, up from Rp 4,730, indicating an expected change of +4.82%. Risk metrics showed a 95% Value at Risk (VaR) of Rp 3,550 and an Expected Shortfall of Rp 3,340. The model’s performance on the test dataset yielded an RMSE of 0.014704 and an sMAPE of 75.7663%.


Keywords


ARIMA-GARCH; Stock Price Forecasting; Volatility Modeling; Bank Mandiri; Risk Estimation

References


Alwi, W., Pratiwi, A. S., & Syata, I. (2022). Forecasting stock price PT. Indonesian telecommunication with ARCH-GARCH model. Jurnal Varian, 5(2), 125–136. https://doi.org/10.30812/varian.v5i2.1543

Amri, I. F., Puspitasari, L., Priambodo, D., Azzahrani, R. D., & Haris, M. A. (2024). Estimasi risiko pada saham PT. Gojek Tokopedia Tbk dan expected shortfall menggunakan ARIMA-GARCH model. Jambura Journal of Probability and Statistics, 5(2), 36–41. https://doi.org/10.34312/jjps.v5i1.22552

Amri, I. F., Sari, W., Widyasari, V. A., Nurohmah, N., & Harise, M. A. (2024). The ARIMA-GARCH method in case study forecasting the daily stock price index of PT. Jasa Marga (Persero). Eigen Mathematics Journal, 7(1), 1–9. https://doi.org/10.12345/eigen.2024.07.01 (dari 174-Article Text-1444-2-10-20240409.pdf)

Arianto, H., & Zainuddin, A. (2020). Peramalan harga komoditas dengan metode ARIMA-GARCH. Varian: Jurnal Statistik dan Aplikasinya, 3(2), 67–76. https://journal.universitasbumigora.ac.id/Varian/article/view/653

Buhungo, R. J., Hasan, I. K., & Nurwan. (2024). Penerapan hybrid metode ARFIMA-ANN menggunakan algoritma backpropagation pada peramalan indeks harga saham gabungan. Euler: Jurnal Ilmiah Matematika, Sains, dan Teknologi, 12(2), 200–205. https://doi.org/10.37905/euler.v12i2.28474

Darma, Y. D., Utami, A., & Pujiharta. (2025). Volatility forecasting using GARCH versus EGARCH models for cryptocurrencies, Indonesian stocks, and U.S. stocks. International Journal of Business and Economics, 9(1), 332–347. https://doi.org/10.33019/ijbe.v9i1.1125

Desvina, A. P., & Khairunisa. (2018). Penerapan metode ARCH/GARCH dalam meramalkan transaksi nilai tukar (kurs) jual mata uang Indonesia (IDR) terhadap mata uang Eropa (GBP). Jurnal Sains Matematika dan Statistika, 4(2), 114–123. ISSN 1693-2390 (print)/ISSN 2407-0939 (online)

Fadillah, N., & Rahmawati, S. (2022). Model peramalan harga saham menggunakan metode ARIMA-GARCH: Kasus PT Unilever Indonesia. Jurnal Matematika dan Penelitian, 9(2), 101–110. https://jos.unsoed.ac.id/index.php/jmp/article/view/8658

Febiola, A., & dkk. (2024). Perbandingan metode ARIMA dan SARIMA dalam peramalan jumlah penumpang bandara Provinsi Kepulauan Bangka Belitung. Jambura Journal of Mathematics, 6(2), 160–168. https://doi.org/10.37905/jjom.v6i2.25081

Gazali, M. M., & Setiawan, H. (2025). Penerapan model ARIMA untuk meramalkan harga pembukaan harian saham PT. Bank Central Asia Tbk. Digital Transformation Technology (Digitech), 5(1), 278–289. https://doi.org/10.47709/digitech.v5i1.6129

Haryanto, B., & Lestari, D. (2022). Peramalan harga saham dengan model hybrid ARIMA-GARCH dan metode walk forward. Jurnal Statistika dan Aplikasinya, 7(3), 210–220. https://journal.unj.ac.id/unj/index.php/statistika/article/view/30524

Kharis, S. A. A., Zili, A. H. A., Putri, A., & Robiansyah, A. (2024). Unveiling the potential of artificial intelligence in digital marketing for Universitas Terbuka. E3S Web of Conferences, 483, 03014. https://doi.org/10.1051/e3sconf/202448303014

Lestari, F., & Purnama, B. (2021). Peramalan indeks harga saham PT Verena Multi Finance menggunakan ARIMA dan ARCH-GARCH. J-Statistika, 9(1), 55–66. https://jurnal.unipasby.ac.id/index.php/jstatistika/article/view/3774

Lubis, S., & Sari, D. (2020). Analisis teknikal dengan ARIMA dan GARCH untuk memprediksi harga saham (Studi kasus PT Intiland). PLANS, 18(1), 50–60.

https://jurnal.unimed.ac.id/2012/index.php/plans/article/download/9601/8792/20545

Maulia, S. D., Triwulandari, R. R. C., Fauzan, M. D., Khoerunnisa, N., Aziz, M. F., & Mangku, I. W. (2024). Perbandingan kinerja model ARIMA dan GARCH dalam peramalan harga saham Bank BRI. MILANG Journal of Mathematics and Its Applications, 20(1), 65–76. https://doi.org/10.29244/milang.20.1.65-76

Nugroho, N. W., & Dewi, V. I. (2024). Analisis forecasting volatilitas saham PT Goto Gojek Tokopedia dengan metode ARCH-GARCH. INOBIS: Jurnal Inovasi Bisnis dan Manajemen Indonesia, 8(1), 48–60.

Purbowisanti, R. (2020). Forecasting volatilitas reksa dana campuran dengan ARCH dan GARCH. At-Tijaroh: Jurnal Ilmiah Manajemen Bisnis dan Islam, 6(2), 132–146. p-ISSN: 2356–492X; e-ISSN: 2549–9270

Putra, A. D., & Handoko, R. (2021). Peramalan return saham subsektor perbankan menggunakan model ARIMA-GARCH. Fourier: Jurnal Matematika dan Pembelajarannya, 10(1), 45–56. https://www.fourier.or.id/index.php/FOURIER/article/view/202

Rahayu, M., & Putri, A. (2022). Peramalan harga saham syariah Jakarta Islamic Index menggunakan ARIMAX-GARCH. BIMASTER, 11(4), 221–231. https://jurnal.untan.ac.id/index.php/jbmstr/article/view/53279

Raissa, Z. (2025). A comparative analysis of financial performance forecasting models: ARIMA, ARIMA-GARCH & LSTM in Indonesian banking stocks. Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas Sam Ratulangi, 12(1), 328–340. ISSN 2356-3966; E-ISSN: 2621-2331

Riyanto, E., Achsani, N. A., & Santoso, M. H. (2021). Model effect of copper price on Freeport McMoRan stock price. Jurnal Aplikasi Manajemen dan Bisnis, 7(3), 535–546. https://doi.org/10.17358/jabm.7.3.535

Septani, A. V., Afendi, F. M., & Kurnia, A. (2025). Perbandingan metode GARCH, LSTM, GRU, dan CNN pada peramalan volatilitas kurs. Limits: Journal of Mathematics and Its Applications, 22(1), 149–169. https://doi.org/10.12962/limits.v22i1.3384

Siregar, R., & Sihombing, F. (2020). Peramalan harga dan tren saham menggunakan model ARIMA-GARCH dan Hidden Markov Model. FARABI: Jurnal Matematika dan Pendidikan Matematika, 18(2), 115–128. https://siakad.univamedan.ac.id/ojs/index.php/JMPM/article/view/866

Sulastri, M., & Nurhalim, A. (2021). Perbandingan kinerja model ARIMA dan GARCH dalam peramalan harga saham Bank BRI. MILANG, 14(2), 77–88. https://journal.ipb.ac.id/jmap/article/view/56624

Wenas, C. D., & Maramis, R. (2023). Peramalan harga saham PT Adhi Karya (Persero) Tbk menggunakan ARIMA-GARCH. d'Cartesian, 12(1), 33–43. https://ejournal.unsrat.ac.id/index.php/decartesian/article/view/49783


Full Text: PDF

DOI: 10.33751/jmp.v13i2.13120

Refbacks

  • There are currently no refbacks.