PEMODELAN DOWNSCALING LUARAN GCM DAN ANOMALI SST NINO 3.4 MENGGUNAKAN SUPPORT VECTOR REGRESSION (Studi Kasus Curah Hujan Bulanan Indramayu)
Abstract
The objective of this research is to develop a downscaling model GCM output and SST anomaly Nino 3.4 as input in the training to predict a rainfall monthly in Indramayu. The techniques of a downscaling is used for a phenomenon indicators of El Nino and Southern Oscillation (ENSO) climate anomaly such as a Global Circulation Model (GCM) and Sea Surface Temperature (SST) nino 3.4 are commonly used as a primary study learn and understand the climate system. This research propose a method for developing a downscaling model GCM output and SST anomaly Nino 3.4 by using Support Vector Regression (SVR). The research result showed that GCM output and SST anomaly Nino 3.4 can be approach the average value of monthly rainfall. The best result of prediction is Bondan station which has average correlation that is 0.700.
Kata kunci : Downscaling, ENSO, Luaran GCM, SST Nino 3.4 and SVR
References
Agmalaro, M.A. 2011. Pemodelan Statistical Downscaling Menggunakan Suport Vector Regression.. [Tesis]. Bogor. Institut Pertanian Bogor.
Buono, A. et al. 2010. A Neural Network Architecture for Statistical Downscaling Technique : A Case Study in Indramayu District. Dipublikasi dalam International Conference, The Quality Information for Competitive Agricultural Based Production System and Commerce (AFITA). http://repository.ipb.ac.id/ handle/123456789/41728 [23 Mei 2011].
Boer R. dan Subiah A.P. 2003. Agricultural drought in Indonesia. In Agriculture and Drought. UK: Oxford University Press.
Ramage C.S. 1971. Monsoon Meteorology. Academic Press Inc., International Geophysics Series, Vol. 15
Muttaqin, M. 2011. Pengembangan Metodologi Downscaling Menggunakan Jaringan Syaraf Tiruan. [Tesis]. Bogor. Institut Pertanian Bogor.
NOAA. 2012. El-Nino Regions. http://www.cpc.noaa.gov/products/ analysis_monitoring/ensostuff/nino regions. [15 Januari 2012]
Philander S.G. 1992. El Nino, La Nina, and Southern Oscillation. Academic Press Inc., San diego, California, USA.
Pramudia, Aris. 2002. Analisis Sensitivitas Tingkat Kerawanan Produksi Padi di Pantai Utara Jawa Barat Terhadap Kekeringan dan El-Nino. [Tesis]. Bogor. Institut Pertanian Bogor.
Smola, A.J., and Scholkopf, B. 2003.”A Tutorial on Support Vector Regression”, NeuroCOLT, Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK.
Sutikno. 2008. Statistical Downscaling Luaran GCS dan Permanfaatannya untuk Peramalan Produksi Padi. [Disertasi]. Institut Pertanian Bogor.
Wigena A.H. 2006. Pemodelan Statistical Downscaling dengan Regresi Projection Persuit untuk Peramalan Curah Hujan. [Disertasi]. Bogor. Institut Pertanian Bogor.
Wilby RL, Wigley TML. 1997. Down scaling general circulation model output : A review of methods and limitations. Progress in Physical Geography, 21,4:530-548.
DOI: 10.33751/ekol.v14i1.130
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.