Hg (II) and Cd (II) Heavy Metal Ions Detection Based On Fluorescence Using Zn (II) Metal Ion Complex with Pyrazoline Derivatives Ligand
Abstract
Pyrazoline derivatives can be used as ligands because they have photophysical properties and can chelate metal ions which cause very strong absorption, emission and have a fluorescence properties. Therefore, in recent years, pyrazoline ligands and their derivatives have been widely used for chemosensors. This research aims to detect fluorescence-based heavy metal ions Hg2+ and Cd2+ using a metal ion complex compound Zn2+ with pyrazoline derivative ligand. The research was started by synthesizing pyrazoline-derived ligands, then synthesizing complex compounds. Complex compounds were characterized using Fourier Transform Infra Red (FTIR), UV-Vis Spectrophotometer, and Spectrofluorometer. Then, a fluorescence study was carried out to determine the type of fluorosensor for complex compounds with the addition of heavy metal ions Cd2+ and Hg2+. The last stage is UV-Vis spectroscopy study on the addition of heavy metal ions Hg2+ and Cd2+. Pyrazoline derivative ligand obtained as para-di-2-(1-phenyl-3-pyridyl-4,5-dihydro-1H-pyrazole-5-yl)benzene is a yellow solid. The metal ion complex compound Zn2+ with pyrazolin derivative ligand is a brown colored compound, has a yield of 45 % and a melting point is 245 oC. The FTIR spectrum showed the presence of functional groups such as amine, C-H aromatic, C=N, C=C aromatic, C-N, Zn-N and Zn-Cl. Analysis with UV-Vis spectrophotometer showed that there was a shift in the maximum wavelength from the ligand to the Zn(II)-ligand complex, namely 240 nm to 246 nm and 363 nm with molar absorptivity values (log ) of 4.56 and 4.28, respectively. For fluorescence analysis, two absorbance peaks were obtained, namely at a wavelength of 370 nm with an intensity of 3644 a.u and 478 m at 8216 a.u. The results of fluorescence chemosensor studies on the addition of heavy metal ions Hg2+ and Cd2+ showed that the metal ion complex compound Zn2+ with pyrazoline-derived ligands can detect heavy metal ions Hg2+ and Cd2+ with a turn-on type.
Keywords
References
Cahyani, N., D. T. F. L. Batu., dan Sulistiono. 2016. Kandungan Logam Berat Pb, Hg, Cd, dan Cu pada Daging Ikan Rejung (Sillago Sihama) di Estuari Sungai Donan, Cilacap, Jawa Tengah. Jurnal Pengolahan Hasil Perikanan Indonesia. 19(3) : 267-276.
Irhamni., Pandia, S., Purba, E. dan Hasan, W. 2017. Serapan Logam Berat Esensial dan Non Esensial pada Air Lindi TPA Kota Banda Aceh dalam Mewujudkan Pembangunan Berkelanjutan. Jurnal Serambi Engineering 2(3): 134 140.
Hanuji, S.Y. 2016. Optimasi Sensitivitas Sensor Bent-Optical Fiber Dengan Pelapisan Kitosan Untuk Deteksi Ion Kadmium. Skripsi. Fakultas MIPA Universitas Negeri Semarang, Semarang.
Kartika, A. 2016. Studi Pengkelatan Ion Logam Dy3+ dan Pr3+ Oleh Ligan 2-(1,5-difenil-4,5-dihidro-1H-pirazolin-3-ly)piridin Sebagai Flurosensor Serta Selektivitasnya. Skripsi. Fakultas MIPA Universitas Indonesia, Depok.
Rustikawati. 2017. Sintesis dan Karakterisasi Senyawa Kompleks Fe3+ dan Cu2+ dengan Ligan 2-(1,5-difenil-4,5-dihidro-1H-pirazol-3-yl)piridin Sebagai Detektor Ion Sianida. Tesis Universitas Indonesia.
Hermawati, E.S., Suhartana., dan Taslimah. 2016. Sintesis dan Karakterisasi Senyawa Kompleks Zn(II)-8-Hidroksikuinolin. Jurnal Kimia Sains dan Aplikasi 19 (3) : 94 98.
Jugal V. 2016. Design, synthesis and biological evaluation of pyrazoline nucleus based homoleptic Ru(III) compounds. Patel, Med. Chem. Commun. 00: 1-3.
Putri, D. N., 2020. Sintesis dan Karakterisasi Senyawa Kompleks dari Ion Logam Co2+ dengan Ligan para-di-2-(1-fenil-3-piridil-4,5-dihidro-1H-pirazoil-5-il)benzena dan Potensinya Sebagai Fluoresensor Ion Logam Berat Hg2+ dan Cu2+. Skripsi. Fakultas MIPA Universitas Pakuan, Bogor.
Syahputri, Y. 2014. Sintesis Ligan para-di-2-(1-methyl-3-pyridyl-4,5-dihydro-1H-pyrazol-5yl)benzena dan Aplikasinya sebagai Fluorosensor Ion Logam Cd2+ dan Pb2+. Tesis. Universitas Indonesia.
Muneera, M. S., & Joseph, J. (2016). Design, synthesis, structural elucidation, pharmacological evaluation of metal complexes with pyrazoline derivates. Journal of Photochemistry and Photobiologi B: Biology, 163, 57-68.
Pavia, D.L., Gary M.L., and George S.K., 2001. Introduction To Spectroscopy. Third Edition. Thomson Learning: Singapore.
Guerrero, Miguel., Josefina Pons., Merce Font-Bardia., Teresa Calvet., and Josep Ros. 2010. Synthesis, Characterization, and Photoluminescent Properties of ZnII, CdII, and HgII Complexes with N, O Hybrid Pyrazole Ligand. Aust J Chem. 63: 958-964.
Hakim, Y.Z dan Zulys, A. 2016. A Fluorescence Study of Pyrazole Derrivative 2 (1,5-diphenyl-4,5-dihydro-1H-pyrazole-3-yl)pyridine Upon Addition of La3+ and Eu3+ Ions. International Conference on Materials,Manucfacturing and Mechanical Engineering. ISBN: 978-1-60595-413-4.
Bernalte-Garcia, A., F.J. Garcia Barros., F.J. Higes-Rolando., and F. Luna-Giles. 2001. The Coordination Chemistry of Thiazoline/Thiazolidine Derivates. II: Synthesis and Characterization of [CoCl2(PyTT)] and ZnCl2(PyTT)] [PyTT =2-(2-pyridyl)imino-N-(2-thiazolin-2-yl)thiazolidine]. Polyhedron. 20(28): 3315-3319.
Ali, Hijazi Abu., Salam M., Issa A.A., Mutaz A., and Suhair J. 2016. Dichloro-bis-(pyridine-2-yl-undecyl-amine)zinc(II), [ZnCl2(C16N2H26)2]: Synthesis, Characterization and Antimalarial Activity. Journal of Coordination Chemistry. 69(16): 2514-2522.
Afrida, Monalisa. 2013. Sintesis Senyawa Kompleks [ZnII(4-(2-thienyl)-2,2:6,2â€-terpyridine)(NO3)2] Dan Aplikasinya Sebagai Fluorosensor Logam Berat. Tesis. Universitas Indonesia.
Lakowicz, J.R. 2006. Principles of Fluorescence Spectroscopy. University of Maryland School of Medicine Baltimore. Maryland, USA (3rd Ed).
DOI: 10.33751/helium.v2i1.5407 Abstract views : 286 views : 285
Refbacks
- There are currently no refbacks.