Application of Naive Bayes Algorithm to Analysis of Free Fatty Acid (FFA) Production Based on Fruit Freshness Level

Wahyu Supriyatin, Yasman Rianto

Abstract


Cooking oil is a basic need for everyone who is used to process food ingredients. The use of cooking oil repeatedly and continuously by heating at high temperatures can increase the free fatty acid levels in the oil. The more the oil is reused, the higher the free fatty acid content. Testing the levels of FFA in oil can be done using the FFA test, because FFA can affect the selling price of CPO when it is marketed. In addition, FFA affects the levels of free fatty acids of CPO. This study aims to determine the analysis of FFA production in palm oil products based on the level of freshness of the fruit. The research was conducted by classifying data mining using the Naïve Bayes Algorithm. The Naïve Bayes algorithm was used to determine whether FFA production had an effect on fruit freshness, fruit quality and fruit soiling. The research was conducted using RapidMiner Studio 9.10 tools. The results of the research from the distribution table show that the value of the FFA attribute obtained 2 conditions, namely super conditions and normal conditions. Where each of these attributes is influenced by the variables of fruit freshness and fruit quality. Probability accuracy results from 60 training data and 40 testing data used are 92.50% for super FFA conditions.


Keywords


Classification; Data Mining; Free Fatty Acid (FFA); Naïve Bayes

References


Sudradjat, Kepala Sawit : Prosperk Pengembangan dan Peningkatan Produktivitas, Bogor: Penerbit IPB Press, 2020. [2] W. Supriyatin, "Palm Oil Extraction Rate Prediction Based on the Fruit Ripeness Level Using C4.5 Algorithm," ILKOM Jurnal Ilmiah, vol. 13, no. 2, pp. 92-100, 2021. [3] R. L. R. Silalahi, D. P. Sari and I. A. Dewi, "Testing of Free Fatty Acid (FFA) and Colour for Controlling the Quality of Cooking Oil Produced by PT. XYZ," Industria : Jurnal Teknologi dan Manajemen Argoindustri, vol. 6, no. 1, pp. 41-50, 2017. [4] Masykur, "Pengembangan Industri Kelapa Sawit Sebagai Penghasil Energi Bahan Bakar Alternatif dan Mengurangi Pemanasan Global (Studi di Riau sebagai Penghasil Kelapa Sawit Terbesar di Indonesia)," Jurnal Reformasi, vol. 3, no. 2, pp. 96-107, 2013. [5] S. Nurulain, N. Aziz, M. Najib, M. Salim and S. Manap, "A review of free fatty acid determination methods for palm cooking oil," Journal of Physics: Conference Series, pp. 1-12, 2021. [6] Febrianto, A. Setianingsih and A. Riyani, "Determination of Free Fatty Acid in Frying Oils of Various Foodstuffs," Indonesian Journal of Chemistry and Environment, vol. 2, no. 1, pp. 1-6, 2019. [7] R. A. Anggraini, G. Widgado, A. S. Budi and M. Qomaruddi, "Penerapan Data Mining Clasification untuk Data Blogger Menggunakan Metode Naive Bayes," JUSTIN (Jurnal Sistem dan Teknologi Informasi), vol. 7, no. 1, pp. 47-51, 2019. [8] Y. Mardi, "Data Mining : Klasifikasi Menggunakan Algoritma C4.5," Jurnal Edik Informatika, vol. 2, no. 2, pp. 213-219, 2016. [9] A. W. Syaputri, E. Irwandi and Mustakim, "Naive Bayes Algorithm for Classification of Student Major's Specialization," Journal of Intelligent Computing and Health Informatics, vol. 1, no. 1, pp. 15-19, 2020. [10] R. Annisa, "Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung," Jurnal Teknik Informatika Kaputama (JTIK), vol. 3, no. 1, pp. 22-28, 2019. [11] Normah, "Naive Bayes Algorithm For Sentiment Analysis Windows Phone Store Application Reviews," Journal Publications & Informatics Engineering Research, vol. 3, no. 2, pp. 1-19, 2019. [12] M. Awaludin, V. Yasin and M. Wahyuningsih, "Optimization of Naive Bayes Algorithm Parameters For Student Graduation Prediction At Universitas Dirgantara Marsekal Suryadarma," Journal of Information System Informatics and Computing, vol. 6, no. 1, pp. 91-106, 2022. [13] N. Abdillah, S. Defit and Sumijan, "Analisis Kinerja Metode Klasifikasi Data Mining Menggunakan Algoritma Naive Bayes Untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa (Studi Kasus STIKES Syedza Saintika)," in Prosiding Seminar Nasional STKIS Syedza Saintika, Padang, 2021. [14] A. S. Fitriani, "Penerapan Data Mining Menggunakan Metode Klasifikasi Naive Bayes untuk Memprediksi Partisipasi Pemilihan Gubernur," JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 3, no. 2, pp. 98-104, 2019. [15] N. Iriadi and N. Nuraeni, "Kajian Penerapan Metode Klasifikasi data Mining Algoritma C4.5 Untuk Prediksi Kelayakan Kredit Pada Bank Mayapada Jakarta," Jurnal Teknik Komputer AMIK BSI, vol. II, no. 1, pp. 132-137, 2016. [16] N. A. Widiastuti, S. Santosa and C. Supriyanto, "Algoritma Klasifikasi Data Mining Naive Bayes Berbasis Particile Swarm Optimization untuk Deteksi Penyakit Jantung," Jurnal Pseudocode, vol. 1, no. 1, pp. 11-14, 2014. [17] D. Berrar, "Bayes' Theorem and Naive Bayes Classifier," January 2018. [Online]. Available: https://www.researchgate.net/publication/324933572_Bayes%27_Theorem_and_Naive_Bayes_Classifier?enrichId=rgreq-a8005eeb8ea85a3d1724c2b7ccc23e07-XXX&enrichSource=Y292ZXJQYWdlOzMyNDkzMzU3MjtBUzo4MDQ4Mjk1MzQzNzU5MzZAMTU2ODg5NzcyMjA3Mg%3D%3D&el=1_x_2&_esc=publ. [Accessed 07 November 2022]. [18] D. Jurafsky and J. H. Martin, Speech and Language Processing, New Jersey: Pearson Prentice Hall, 2021. [19] T. M. Mitchell, Machine Learning, McGraw-Hill Science, 2017. [20] C. M. V. Polette, P. R. Ramos, C. B. Goncalves and A. L. D. Oliveira, "Determination of fress fatty acids in crude vegetable oil samples obtained by high-pressure processes," Food Chemistry: X, vol. 12, pp. 1-8, 2021.


Full Text: PDF

DOI: 10.33751/komputasi.v20i1.6293 Abstract views : 192 views : 194

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.