Effect of Sappan Wood Ethanol Extract in CRP Level and Phagocytic Index Between Group of Mice Infected with S. aureus and E. coli
Abstract
S.aureusand E.coli are pathogenic bacterial that cause many infectious disease in the world. Immunomodulator is needed to prepare the immune system to be able against the infection. Some parameters usually used to assess the immunomodulatory activity such as C-Reactive Protein (CRP) and phagocytic index. This study aims to investigate the difference effect of sappan1wood extract in CRP level and phagocytic index between group mice infected with S. aureus and E. coli. Two treatment groups of mice were prepared for S. aureus and E. coli test. Each group subjected to 7 treatments i.e. (1) Normal mice1(CMC-Na 1 %- Merck® 217277), 1(2) Negative Control (bacterial infection + CMC-Na 1 %),11(3) Positive Control (bacterial infection + Imboost force®1treatment, PT SOHO Industri Pharmasi), (4) Bacterial infection and EESW treatment 25 mg/kg BW, (5) 50 mg/kg BW, (6) 100 mg/kg BW, and (7) 200 mg/kg BW. Mice blood was taken to detect the CRP and phagocytic index after treatment. The T test showed that there was a significant difference between CRP levels (p<0.05) and phagocytic index (p<0.05) of S. aureus and E. coli group. EESW 200 mg/kg BW reduced CRP level to 11 mg/dL (S. aureus) and 6 mg/dL in (E. coli). EESW 200 mg/kg BW increased phagocytosis to 1.54 folds (S. aureus) and 4.62 folds (E. coli). Sappan wood ethanol extract effect to CRP level and phagocytic index1in mice group infected with E. coli is better than S. aureus1infection group.
Keywords
References
Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27(9). https://doi.org/10.3390/molecules27092901
Arjin, C., Hongsibsong, S., Pringproa, K., Seel-Audom, M., Ruksiriwanich, W., Sutan, K., Sommano, S. R., & Sringarm, K. (2021). Effect of ethanolic caesalpinia sappan fraction on in vitro antiviral activity against porcine reproductive and respiratory syndrome virus. Veterinary Sciences, 8(6). https://doi.org/10.3390/vetsci8060106
Bernard, M., Furlong, S. J., Power Coombs, M. R., & Hoskin, D. W. (2015). Differential Inhibition of T Lymphocyte Proliferation and Cytokine Synthesis by [6]-Gingerol, [8]-Gingerol, and [10]-Gingerol. Phytotherapy Research, 29(11), 1707–1713. https://doi.org/10.1002/ptr.5414
Doron, S; Gorbach, S. (2020). Bacterial Infections : Overview. Bacteriology Amsterdam, Amsterdam, The Netherlands, 3(January).
Du Clos, T. W. (2000). Function of C-reactive protein. Annals of Medicine, 32(4), 274–278. https://doi.org/10.3109/07853890009011772
Erick Khristian, Ratu Safitri, Mohammad Ghozali, M. H. B. (2022). Effect of Chronic Toxicity Studies of Sappan Wood Extract on The Kupffer Cells Number in Rats (Rattus novergicus) (pp. 695–700).
Ezz, M. K. (2011). The ameliorative effect of Echinacea purpurea against gamma radiation induced oxidative stress and immune responses in male rats. Australian Journal of Basic and Applied Sciences, 5(10), 506–512.
Feezor, R. J., Oberholzer, C., Baker, H. V., Novick, D., Rubinstein, M., Moldawer, L. L., Pribble, J., Souza, S., Dinarello, C. A., Ertel, W., & Oberholzer, A. (2003). Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria. Infection and Immunity, 71(10), 5803–5813. https://doi.org/10.1128/IAI.71.10.5803-5813.2003
Gond, S. P., Sahu, S., Rawat, S., Rajendiran, A., & Singh, A. (2022). Immunomodulatory Natural Product: Review. Asian Journal of Pharmaceutical and Clinical Research, 15(5), 5–9. https://doi.org/10.22159/ajpcr.2022.v15i5.44374
Gordon, S. (2016). Phagocytosis: An Immunobiologic Process. Immunity, 44(3), 463–475. https://doi.org/10.1016/j.immuni.2016.02.026
Han, L., Fu, Q., Deng, C., Luo, L., Xiang, T., & Zhao, H. (2022). Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scandinavian Journal of Immunology, 95(1), 1–19. https://doi.org/10.1111/sji.13106
Hemthanon, T., & Ungcharoenwiwat, P. (2022). Antibacterial activity, stability, and hemolytic activity of heartwood extract from Caesalpinia sappan for application on nonwoven fabric. Electronic Journal of Biotechnology, 55, 9–17. https://doi.org/10.1016/j.ejbt.2021.10.002
Hoerr, V., Zbytnuik, L., Leger, C., Tam, P. P. C., Kubes, P., & Vogel, H. J. (2012). Gram-negative and gram-positive bacterial infections give rise to a different metabolic response in a mouse model. Journal of Proteome Research, 11(6), 3231–3245. https://doi.org/10.1021/pr201274r
Holidah, D., Dewi, I. P., Siregar, I. P. A., & Aftiningsih, D. (2022). Hepatoprotective Effect of Caesalpinia sappan L. Ethanolic Extract on Alloxan Induced Diabetic Rats. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 8(1), 1–9. https://doi.org/10.22487/j24428744.2022.v8.i1.15601
Ibrahim, O. O. (2020). Cronicon EC Microbiology EC Microbiology Staphylococcus aureus a Gram-positive Coccid Bacterium Causing Microbial Infections, and Toxins Symptoms Including Food Poisoning. October, 61–76.
Jäger, A. V., Arias, P., Tribulatti, M. V., Brocco, M. A., Pepe, M. V., & Kierbel, A. (2021). The inflammatory response induced by Pseudomonas aeruginosa in macrophages enhances apoptotic cell removal. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-81557-1
Jiang, L., Zhang, G., Li, Y., Shi, G., & Li, M. (2021). Potential Application of Plant-Based Functional Foods in the Development of Immune Boosters. Frontiers in Pharmacology, 12(April), 1–18. https://doi.org/10.3389/fphar.2021.637782
Ko, Y. P., Kuipers, A., Freitag, C. M., Jongerius, I., Medina, E., van Rooijen, W. J., Spaan, A. N., van Kessel, K. P. M., Höök, M., & Rooijakkers, S. H. M. (2013). Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface. PLoS Pathogens, 9(12), 1–13. https://doi.org/10.1371/journal.ppat.1003816
Lubis, M., Lubis, A. D., & Nasution, B. B. (2020). The usefulness of c-reactive protein, procalcitonin, and PELOD-2 score as a predictive factor of mortality in sepsis. Indonesian Biomedical Journal, 12(2), 102–108. https://doi.org/10.18585/inabj.v12i2.1073
Mamun, M. A. Al, Rakib, A., Mandal, M., Kumar, S., Singla, B., & Singh, U. P. (2024). Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules, 14(2). https://doi.org/10.3390/biom14020221
Mathew, J. (2015). Immunomodulatory Activity of Caesalpinia sappan L. Extracts on Peritoneal Macrophage of Albino Mice. International Journal of Science and Research (IJSR), 4(12), 449–452. https://doi.org/10.21275/v4i12.nov151953
Matthew Mueller; Christopher R. Tainter. (2023). Escherichia Coli Infection Medscape. NCBI Bookshelf, 1–14. https://www.ncbi.nlm.nih.gov/books/NBK564298/
Mölkänen, T., Ruotsalainen, E., Rintala, E. M., & Järvinen, A. (2016). Predictive Value of C-Reactive Protein (CRP) in identifying fatal outcome and deep infections in staphylococcus aureus bacteremia. PLoS ONE, 11(5), 1–14. https://doi.org/10.1371/journal.pone.0155644
Muti, A. F., Pradana, D. L. C., & Rahmi, E. P. (2021). Extract of Caesalpinia sappan L. heartwood as food treatment anti-diabetic: A narrative review. IOP Conference Series: Earth and Environmental Science, 755(1). https://doi.org/10.1088/1755-1315/755/1/012042
Narayan Swamy, S. N., Jakanur, R. K., & Sangeetha, S. R. (2022). Significance of C-reactive Protein Levels in Categorizing Upper and Lower Urinary Tract Infection in Adult Patients. Cureus, 14(6). https://doi.org/10.7759/cureus.26432
Nehring, S.M; Goyal, Amandeep; Patel, B. C. (2023). C reactive protein (Japanese). NCBI Bookshelf. A Service of the National Library of Medicine, National Institutes of Health.
Nirmal, N. P., Rajput, M. S., Prasad, R. G. S. V., & Ahmad, M. (2015). Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicine, 8(6), 421–430. https://doi.org/10.1016/j.apjtm.2015.05.014
Nugraheni, K., & Saputri, F. C. (2017). The effect of secang extract (Caesalpinia sappan linn) on the weight and histology appearance of white male rats’ hearts induced by isoproterenol. International Journal of Applied Pharmaceutics, 9, 59–61. https://doi.org/10.22159/ijap.2017.v9s1.35_41
Park, W. B., Lee, K. D., Lee, C. S., Jang, H. C., Kim, H. Bin, Lee, H. S., Oh, M. D., & Choe, K. W. (2005). Production of C-reactive protein in Escherichia coli-infected patients with liver dysfunction due to liver cirrhosis. Diagnostic Microbiology and Infectious Disease, 51(4), 227–230. https://doi.org/10.1016/j.diagmicrobio.2004.11.014
Piazza, S., Fumagalli, M., Martinelli, G., Pozzoli, C., Maranta, N., Angarano, M., Sangiovanni, E., & Dell’Agli, M. (2022). Hydrolyzable Tannins in the Management of Th1, Th2 and Th17 Inflammatory-Related Diseases. Molecules, 27(21), 1–25. https://doi.org/10.3390/molecules27217593
Rahman, H., Aldi, Y., & Mayanti, E. (2016). Aktivitas Imunomodulator dan Jumlah Sel Leukosit dari Ekstrak Kulit Buah Naga Merah (Hylocereus Lemairei (Hook.) Britton & Rose) Pada Mencit Putih Jantan. Jurnal Farmasi Higea, 8(1), 44–58.
Reyes-Silveyra, J., & Mikler, A. R. (2016). Modeling immune response and its effect on infectious disease outbreak dynamics. Theoretical Biology and Medical Modelling, 13(1), 1–21. https://doi.org/10.1186/s12976-016-0033-6
Reze Fikrih Utama, Rosidah, Y. (2020). Immunomodulator Activity of Puguntano (Picria felterrae Lour.) Extract in White Male Mice by Carbon Clearance Method. Indonesian Journal of Pharmaceutical and Clinical Research (IDJPCR), 03(02), 19–24.
Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology, 9(Apr), 1–11. https://doi.org/10.3389/fimmu.2018.00754
Stem, T., Littoralis, S., Methanol, H., Mahardhika, C., Yuni, D., Hidayati, N., Yudani, T., & Raras, M. (2022). Asian Journal of Health Research. 1, 19–24.
Sudeep, H. V., Gouthamchandra, K., Ramanaiah, I., Raj, A., Naveen, P., & Shyamprasad, K. (2023). A standardized extract of Echinacea purpurea containing higher chicoric acid content enhances immune function in murine macrophages and cyclophosphamide-induced immunosuppression mice. Pharmaceutical Biology, 61(1), 1211–1221. https://doi.org/10.1080/13880209.2023.2244000
Sunitha, V. S., Sunil, M. A., Radhakrishnan, E. K., & Mathew, J. (2015). Immunomodulatory Activity of Caesalpinia sappan L. Extracts on Peritoneal Macrophage of Albino Mice. International Journal of Science and Research (IJSR), 4(12), 449–452. https://doi.org/10.21275/v4i12.nov151953
Susmitha, N., Swamy, P.N., P. Venkatesh. (2022). Review on Infectious Diseases. International Journal of Indigenous Herbs and Drugs, 07(01), 18–21.
Uribe-Quero, E., & Rosales, C. (2017). Control of phagocytosis by microbial pathogens. Frontiers in Immunology, 8(Oct), 1–23. https://doi.org/10.3389/fimmu.2017.01368
Vij, T., Anil, P. P., Shams, R., Dash, K. K., Kalsi, R., Pandey, V. K., Harsányi, E., Kovács, B., & Shaikh, A. M. (2023). A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules, 28(17). https://doi.org/10.3390/molecules28176247
Wahyu, S., Hamid, F., Hatta, M., Djawad, K., & Bukhari, A. (2021). Effectiveness of Giving Secang Wood Extract (Caesalpinia Sappan L) Against IL-6 And IL-10 Levels in Balb / C Mice With Vulvovaginalis Candidiasis. Indian Journal of Forensic Medicine & Toxicology, 15(2), 1609–1614. https://doi.org/10.37506/ijfmt.v15i2.14567
Widigdyo, A., Widodo, E., & Djunaidi, I. H. (2017). Extract of Caesalpinia sappan L. as Antibacterial Feed Additive on Intestinal Microflora of Laying Quail. The Journal of Experimental Life Sciences, 7(1), 7–10. https://doi.org/10.21776/ub.jels.2016.007.01.02
Yang, F., Zhang, F., Yang, L., Li, H., & Zhou, Y. (2021). Establishment of the reference intervals of whole blood neutrophil phagocytosis by flow cytometry. Journal of Clinical Laboratory Analysis, 35(8), 1–8. https://doi.org/10.1002/jcla.23884.
DOI: 10.33751/jf.v14i1.10040 Abstract views : 118 views : 87
Refbacks
- There are currently no refbacks.