PEMODELAN VEISV DENGAN PENANGGULANGAN KARANTINA DAN VAKSINASI PADA PENYEBARAN VIRUS KOMPUTER

Ridwan Gunawan, Hagni Wijayanti

Abstract


At this time computers and the Internet has become our daily needs, If the computer or the Internet network is disrupted, then it will interfere with our daily productivity. Usually computers and Internet will be disrupted if attacked by a virus, it can anticipate the computer's interference so as not to happen mass destruction on the computer or barriers to our daily productivity, we need to know the pattern of the spread of the Internet virus. Mathematical modelling can be one method to know the pattern of the spread of computer virus, so that if there is increasing the spread can be minimized. The models used in this study are VEISV models with Quarantine and Vaccination Enhancement. From the model get a reproduction number. Based on stability analysis of fixed point with criterion of Routh-Hurtwitz obtained first fixed point and second fixed point, then done arrangement of syntax to know rate of spread of computer virus. From the analysis results obtained the pattern of the spread of computer virus on virus free condition and virus infected.

Keywords: Computer Virus, Quarantine and Vaccination, VEISV.


References


Soleh, M., & Pakpahan, S. R. (2015). Analisis Kestabilan Model Veisv Penyebaran Virus Komputer Dengan Pertumbuhan Logistik. Jurnal Sains Matematika Dan Statistika, 1(2), 27. https://doi.org/10.24014/jsms.v1i2.1956.

Yang, X., Mishra, B. K., Liu, Y. (2012). Computer virus: Theory, model, and methods. Discrete Dynamics in Nature and Society. 2012. https://doi.org/10.1155/2012/473508.

Javidi, M., Nyamorady, N. (2014). Stability analysis of a novel VEISV propagation model of computer worm attacks. World J. Model. Simul. 10(3): 163174.

Wang, F., Yang, F., Wang, C., Zhao, D., & Zhang, Y. (2016). Stability analysis of a worm propagation model with quarantine and vaccination. International Journal of Network Security. 18(3): 493500.

Gao, Q., Zhuang, J. (2020). Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model. Applied Mathematics and Computation. 368. https://doi.org/10.1016/j.amc.2019.124584.

Selvam, A. G. M., Winster, S. G., Janagaraj, R., Jones, G. M. (2020). Modeling Worm Proliferation in Wireless Sensor Networks with Discrete Fractional Order System. International Journal of Recent Technology and Engineering. 8(5): 1815-1820. https://doi.org/10.35940/ijrte.e4594.018520.

Zhu, Q., Yang, X., Ren, J. (2012). Modeling and analysis of the spread of computer virus. Communications in Nonlinear Science and Numerical Simulation. 17(12): 51175124. https://doi.org/10.1016/j.cnsns.2012.05.030.

Toutonji, O. A., Yoo, S. M., Park, M. (2012). Stability analysis of VEISV propagation modeling for network worm attack. Applied Mathematical Modelling. 36(6): 27512761. https://doi.org/10.1016/j.apm.2011.09.058.

Geethamalini, S., Balamuralitharan, S., Radha, M., Geetha, V., Rathinasamy, A. (2019). Stability analysis of deterministic SEIA worm model by reproductive number. AIP Conference Proceedings. 2112(June). https://doi.org/10.1063/1.5112229.

Parsamanesh, M., Mehrshad, S. (2019). Stability of the equilibria in a discrete-time sivs epidemic model with standard incidence. Filomat. 33(8): 23932408. https://doi.org/10.2298/FIL1908393P.

Gunawan R, Wijayanti, H, Setyaningsih, S. (2018). Pemodelan VEISV dengan Penanggulangan Karantina dan Vaksinasi pada Penyebaran Virus Komputer. 51.

Hernández, G. J. D., Martín del Rey, A., & Hernández Encinas, L. (2017). Study of the stability of a SEIRS model for computer worm propagation. Physica A: Statistical Mechanics and Its Applications. 479: 411421. https://doi.org/10.1016/j.physa.2017.03.023.

Uçar, S. (2020). Analysis of a basic seira model with atangana-baleanu derivative. AIMS Mathematics. 5(2): 14111424. https://doi.org/10.3934/math.2020097.


Full Text: PDF

DOI: 10.33751/interval.v1i1.3184 Abstract views : 405 views : 326

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.