PERAMALAN INFLASI DENGAN METODE PARTICLE SWARM OPTIMIZATION EXTREME LEARNING MACHINE

Raudhatul Ilmiyah, Dewi Rachmatin, Rini Marwati

Abstract


The Extreme Learning Machine (ELM) method is a learning method on an artificial neural network that is used to solve non-linear problems. In this article, the Particle Swarm Optimization (PSO) method is combined with the Extreme Learning Machine (ELM) method to determine the number of neurons in the hidden layer, so that the results obtained are quite accurate and more efficient in terms of time. Furthermore, the PSO-ELM method was applied to inflation data in Indonesia, and the results showed that the Roots Mean Square Error (RMSE) value in the training process was 0.005487935, and the RMSE value in the testing process was 0.4124935. These results indicate that the PSO-ELM method is suitable for forecasting inflation in Indonesia.

 


Keywords


Particle Swarm Optimization (PSO); Extreme Learning Machine (ELM)

References


Alfiyati, A. N., Mahmudy, W. F., Ananda, C. F., & Anggodo, Y. P. (2019). Penerapan Extreme Learning Machine (ELM) untuk Peramalan Laju Inflasi di Indonesia. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK). 6(2): 179-186. http://doi.org/10.25126/jtiik.201962900

Amrin. (2014). Peramalan Tingkat Inflasi Indonesia Menggunakan Neural Network Backpropagation Berbasis Metode Time Series. Jurnal Techo Nusa Mandiri. 11(2): 129-136. https://doi.org/10.31227/osf.io/7hsp2

Handika, P.S., Giriantari, I. A., & Dharma, A. (2016). Perbandingan Metode Extreme Learning Machine dan Particle Swarm Optimization Extreme Learning Machine untuk Peramalan Jumlah Penjualan Barang. Majalah Ilmiah Teknologi Elektro. 15(1): 84-90. https://doi.org/10.24843/MITE.2016.v15i01p15

Hartati. (2017). Penggunaan Metode ARIMA dalam Meramal Pergerakan Inflasi. Jurnal Matematika, Sains, dan Teknologi. 18(1): 1-10. https://doi.org/10.33830/jmst.v18i1.163.2017

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. Neurocomputing. 70: 489-501.

https://doi.org/%2010.1016/j.neucom.2010.02.019

Kaloop, M.R., Kumar, D., Samui, P., et all. (2019). Particle Swarm Optimization Algorithm-Extreme Learning Machine (PSO-ELM) Model for Predicting Resilient Modulus of Stabilized Aggregate Bases. Appl. Sci. 9(16): 1-13.

https://doi.org/%2010.3390/app9163221

Nurmahaludin. (2013). Perancangan Algoritma Belajar Jaringan Syaraf Tiruan Menggunakan Particle Swarm Optimization (PSO). Jurnal Poros Teknik. 5(1): 18-23. https://media.neliti.com/media/publications/126356-ID-perancangan-algoritma-belajar-jaringan-s.pdf

Panjaitan, M. N., & Wardoyo. (2016). Faktor-Faktor yang Mempengaruhi Inflasi di Indonesia. Jurnal Ekonomi Bisnis. 21(3): 182-193. https://media.neliti.com/media/publications/97274-ID-none.pdf

Sateria, A., Saputra, I. D., & Dharta, Y. (2018). Penggunaan Metode Particle Swarm Optimization (PSO) pada Optimasi Multirespon Gaya Tekan dan Momen Torsi Penggurdian Material Komposit Glass Fiber Reinforce Polymer (GFRP) yang Ditumpuk dengan Material Stainless Steel (SS). Jurnal Manutech. 10(1): 1-7. https://doi.org/10.33504/manutech.v10i01.52

Tiruneh, G. G., Fakey, A. R., & Sumati, V. (2020). Neuro-fuzzy System in Construction Engineering and Management Research. Automation in Construction. 103348.

https:// doi.org/10.1016/j.autcon.20.103348

Wahyuddin, S. (2019). Prediksi Inflasi Indonesia Memakai Model ARIMA dan Artificial Neural Network. Jurnal Tata Kelola dan Kerangka Kerja Teknologi Informasi. https://doi.org/10.34010/jtk3ti.v5i1.2297

Wahyuningsih, D., Zuhroh, I., & Zainuri. (2008). Prediksi Inflasi Indonesia dengan Model Artificial Neural Network. Jurnal of Indonesian Applied Economics. 2(2): 113-127. https://doi.org/10.21776/ub.jiae.2008.002.02.7

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. IEEE Conference on Neural Networks. (pp. 1942-1948).

Fitriah, A., & Abadi, A. M. (2011). Aplikasi Model Neuro Fuzzy Untuk Prediksi Tingkat Inflasi di Indonesia. Prosiding. http://eprints.uny.ac.id/7301/1/t-2.pdf

[diakses 4 Desember 2021]

Kurniawati, F. (2019). Pengendalian Inflasi dalam Perspektif Ekonomi Islam (Studi Efektivitas Instrumen Moneter Syariah di Lampung). Adzkiya. https://e-journal.metrouniv.ac.id/index.php/adzkiya/article/download/1252/1145 [diakses 4 Desember 2021]

Bank Indonesia. (2018). Moneter: Inflasi. https://www.bi.go.id/id/fungsi-utama/moneter/inflasi/Default.aspx [diakses 15 September 2021]

Ilmiyah, R. (2021). Metode Particle Swarm Optimization Extreme Learning Machine (PSO-ELM) Untuk Peramalan Inflasi di Indonesia. Skripsi.


Full Text: PDF

DOI: 10.33751/interval.v2i1.5181 Abstract views : 777 views : 593

Refbacks

  • There are currently no refbacks.