ANALISIS PENGARUH FAKTOR RISIKO PENYAKIT PNEUMONIA TERHADAP ANGKA MORTALITAS BAYI DAN BALITA MENGGUNAKAN REGRESI POISSON DAN REGRESI BINOMIAL NEGATIF (Studi Kasus : Provinsi Jawa Barat)

Maulida Nursantika, Yasmin Erika Faridhan, Isti Kamila

Abstract


Pneumonia is an acute infectious disease that attacks lungs caused by viruses, bacteria or fungi. This infection can be life-threatening for anyone, especially infants, children and people aged 65 years. In 2020 in West Java Province infant and toddler deaths due to pneumonia reached 122 cases. This study aims to analyze the factors that influence infant and under-five mortality rates by comparing Poisson regression and negative binomial regression, as well as modeling significant factors. The handling of overdispersion cases in Poisson regression can be done with alternative methods, one of which is the negative binomial regression method. This study uses secondary data obtained from the Health Profile of West Java Province 2020. The results of the study show that negative binomial regression handles overdispersion cases in data on the number of infant and under-five deaths due to pneumonia in West Java Province in 2020. Factors that influence infant mortality rates and toddlers due to pneumonia are low birth weight babies (X2) and population density (X4).

Keywords


pneumonia, children under 5 years old, overdispersion, Poisson regression, negative binomial regression.

References


Kulsum, U., Astuti, D., Wigati, A. (2019). Kejadian pneumonia pada balita dan riwayat pemberian ASI di UPT Puskesmas Jepang Kudus. Jurnal Ilmu Keperawatan dan Kebidanan, 10(1): 130-135. https://doi.org/10.26751/jikk.v10i1.636

[Kemenkes RI] Kementerian Kesehatan Republik Indonesia. (2021). Profil Kesehatan Indonesia 2020. Jakarta: Kemenkes RI.

Rizda, F.W.N., Sari, M. (2021). Studi ekologi faktor pejamu, kondisi fisik hunian dan pneumonia pada balita Provinsi Jawa Barat tahun 2014-2017. Jurnal Kesmas Untika Luwuk, 12(1): 29-40. https://doi.org/10.51888/phj.v12i1.54

Kusnandar, V.B. (2021). Anak balita di Jawa Barat terbanyak nasional. https://databoks.katadata.co.id/datapublish/2021/11/19/anak-balita-di-jawa-barat-terbanyak-nasional [Diakses 15 Mei 2022]

Ristiani, D.A. (2021). Analisis faktor-faktor yang mempengaruhi jumlah balita yang terkena penyakit pneumonia di Provinsi Jawa Barat dengan regresi terboboti geografis [skripsi]. Jakarta: UIN Syarif Hidayatullah, Fakultas Sains dan Teknologi.

Fitrial, N.H., Fatikhurrizqi, A. (2020). Pemodelan jumlah kasus COVID-19 di Indonesia dengan pendekatan regresi Poisson dan regresi binomial negatif. Seminar Nasional Official Statistik, Politeknik Statistika STIS, Jakarta Timur, 23 - 24 September 2020, (1):65-72. https://doi.org/10.34123/semnasoffstat.v2020i1.465

[UCLA] University of California Los Angeles. (2021). Negative binomial regression. https://stats.oarc.ucla.edu/spss/dae/negative-binomial-regression/ [Diakses 28 Maret 2022]

Umami, N.S., Ispriyanti, D., Widiharih, T. (2013). Aplikasi model regresi Poisson tergeneralisasi pada kasus angka kematian bayi di Jawa Tengah tahun 2007. Jurnal Gaussian, 2(4): 361-368. https://doi.org/10.14710/j.gauss.v2i4.3810

Dupuy, J. (2018). Statistical Methods for Overdispersed Count Data. London: ISTE Press Ltd.

Hardin, W.J., Hilbe, J.M. (2007). Generalized Linear Models and Extensions. College Station, TX : Stata Press.

Nugraha, J. (2017). Metode Maksimum Likelihood dalam Model Pemilihan Diskrit. Yogyakarta: Universitas Islam Indonesia.

Ghozali, I. (2018). Aplikasi Analisis Multivariate. Semarang: Badan Penerbit Universitas Diponegoro.

Sembiring, R.K. (2003). Analisis Regresi. Edisi Kedua. Bandung: ITB.

Majore, M.M., Salaki, D.T., Prang, J.D. (2020). Penerapan regresi binomial negatif dalam mengatasi overdispersi regresi Poisson pada kasus jumlah kematian ibu. d’CartesiaN, 9(2): 133-139. https://doi.org/10.35799/dc.9.2.2020.29150


Full Text: PDF

DOI: 10.33751/interval.v3i2.9093 Abstract views : 385 views : 292

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.