Prebiotic Activity of Ambon Banana (Musa acuminata (AAA Group) ‘Ambon’) Peel Starch Against Lactobacillus. acidophilus and Escherichia coli In Vitro

Bertha Rusdi, Umi Yuniarni

Abstract


Prebiotics are compounds with the ability to specifically enhance the population of advantageous bacteria in the gastrointestinal tract. Starch is a polysaccharide which has prebiotic activity. Agricultural waste like banana peel contains prebiotic polysaccharides including starch. The prebiotic effect of starch from many varieties of banana peel has been explored by researchers. Although Ambon banana is a variety that is commonly consumed in Indonesia, the prebiotic activity of its peel, particularly the peel starch,  has not been studied yet. Thus, this study aims to research the prebiotic activity of Ambon banana peel starch against probiotic bacteria of the Lactobacillus acidophilus and the opportunistic pathogen bacteria of Eschericia coli. In this research, starch was extracted from banana peel (var. pisang Ambon) and prebiotic activity of the starch was tested on L. acidophilus and E. coli.  The number of bacteria was calculated at 0 and 24 hours of incubation using plate count methods.The result showed that at the concentration of 1% w/v, Ambon banana peel starch increases the number of L. acidophilus while inhibiting the growth of E. coli. The L. acidophilus culture in the starch-containing media had SCFAs (acetic, butyric and propionic acid) that were  known to have good impact to human health.


Keywords


Prebiotic; Ambon banana peel; Starch; L. acidophilus.

References


Adebola, O. O., Corcoran, O., & Morgan, W. A. (2014). Synbiotics: the impact of potential prebiotics inulin, lactulose and lactobionic acid on the survival and growth of lactobacilli probiotics. Journal of Functional Foods, 10, 75–84. https://doi.org/https://doi.org/10.1016/j.jff.2014.05.010

Aquino, C. F., Salomão, L. C. C., Ribeiro, S. M. R., Siqueria, D. L. D. E., & Cecon, P. R. (2016). Carbohydrates, phenolic compounds and antioxidant activity in pulp and peel of 15 banana cultivars. Revista Brasileira de Fruticultura, 38.

Bamigbade, G. B., Subhash, A. J., Kamal-Eldin, A., Nyström, L., & Ayyash, M. (2022). An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. In Molecules (Vol. 27, Issue 18). https://doi.org/10.3390/molecules27185947

Bedani, R., Rossi, E. A., & Saad, S. M. I. (2013). Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiology, 34(2), 382–389. https://doi.org/10.1016/j.fm.2013.01.012

Carlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018). Health Effects and Sources of Prebiotic Dietary Fiber. Current Developments in Nutrition, 2(3), nzy005. https://doi.org/10.1093/cdn/nzy005

Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S. J., Berenjian, A., & Ghasemi, Y. (2019). Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 1–27. https://doi.org/10.3390/foods8030092

Farias, D. de P., de Araújo, F. F., Neri-Numa, I. A., & Pastore, G. M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in Food Science & Technology, 93, 23–35. https://doi.org/https://doi.org/10.1016/j.tifs.2019.09.004

Handayani, I. N. A. (2021). Potensi Yogurt Dengan Penambahan Lactobacillus casei dan Tepung Pisang Ambon Dalam Menghambat Patogen. JITIPARI, 6(2), 1–13. https://ejurnal.unisri.ac.id/index.php/jtpr/article/download/5008/pdf

Hernández, M. A. G., Canfora, E. E., Jocken, J. W. E., & Blaak, E. E. (2019). The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients, 11(8). https://doi.org/10.3390/nu11081943

Hosseini, E., Grootaert, C., Verstraete, W., & Van de Wiele, T. (2011). Propionate as a health-promoting microbial metabolite in the human gut. Nutrition Reviews, 69(5), 245–258. https://doi.org/10.1111/j.1753-4887.2011.00388.x

Jaiturong, P., Laosirisathian, N., Sirithunyalug, B., Eitssayeam, S., Sirilun, S., Chaiyana, W., & Sirithunyalug, J. (2020a). Physicochemical and prebiotic properties of resistant starch from Musa sapientum Linn., ABB group, cv. Kluai Namwa Luang. Heliyon, 6(12), e05789. https://doi.org/10.1016/j.heliyon.2020.e05789

Jaiturong, P., Laosirisathian, N., Sirithunyalug, B., Eitssayeam, S., Sirilun, S., Chaiyana, W., & Sirithunyalug, J. (2020b). Potential of Musa sapientum Linn. for digestive function promotion by supporting Lactobacillus sp. Heliyon, 6(10), e05247. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05247

Khamsucharit, P., Laohaphatanalert, K., Gavinlertvatana, P., Sriroth, K., & Sangseethong, K. (2018). Characterization of pectin extracted from banana peels of different varieties. Food Science and Biotechnology, 27(3), 623–629.

Le, B., & Yang, S. H. (2019). Production of prebiotic xylooligosaccharide from aqueous ammonia‐pretreated rice straw by β‐xylosidase of Weissella cibaria. Journal of Applied Microbiology, 126(6), 1861–1868.

Li, M.-C., Chou, C.-F., Hsu, S.-C., & Lin, J.-S. (2020). Physicochemical characteristics and resistant starch of different varieties of banana from Taiwan. International Journal of Food Properties, 23(1), 1168–1175. https://doi.org/10.1080/10942912.2020.1788077

Musita, N. (2012). Kajian Kandungan dan Karakterisik Pati Resisten dari Berbagai Varietas Pisang. Jurnal Teknologi & Industri Hasil Pertanian, 14(1), 68–79. http://dx.doi.org/10.28959/jdpi.v23i1.557

Nielsen, S. S. (2017). Total Carbohydrate by Phenol-Sulfuric Acid Method BT - Food Analysis Laboratory Manual (S. S. Nielsen (ed.); pp. 137–141). Springer International Publishing. https://doi.org/10.1007/978-3-319-44127-6_14

Oniszczuk, A., Oniszczuk, T., Gancarz, M., & Szymańska, J. (2021). Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. In Molecules (Vol. 26, Issue 4). https://doi.org/10.3390/molecules26041172

Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1

Phillips, K. M., McGinty, R. C., Couture, G., Pehrsson, P. R., McKillop, K., & Fukagawa, N. K. (2021). Dietary fiber, starch, and sugars in bananas at different stages of ripeness in the retail market. PloS One, 16(7), e0253366. https://doi.org/10.1371/journal.pone.0253366

Phirom-on, K., & Apiraksakorn, J. (2021). Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience, 41, 101083. https://doi.org/10.1016/j.fbio.2021.101083

Pituch, A., Walkowiak, J., & Banaszkiewicz, A. (2013). Butyric acid in functional constipation. Przeglad Gastroenterologiczny, 8(5), 295–298. https://doi.org/10.5114/pg.2013.38731

Powthong, P., Jantrapanukorn, B., Suntornthiticharoen, P., & Laohaphatanalert, K. (2020). Study of prebiotic properties of selected banana species in Thailand. Journal of Food Science and Technology, 57(7), 2490–2500. https://doi.org/10.1007/s13197-020-04284-x

Romelle, F. D., Rani, A., & Manohar, R. S. (2016). Chemical composition of some selected fruit peels. European Journal of Food Science and Technology, 4(4), 12–21.

Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S., & Sridhar, M. (2015). Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioactive Carbohydrates and Dietary Fibre, 5(1), 62–71.

Sánchez-Clemente, R., Guijo, M. I., Nogales, J., & Blasco, R. (2020). Carbon Source Influence on Extracellular pH Changes along Bacterial Cell-Growth. Genes, 11(11). https://doi.org/10.3390/genes11111292

Setiarto, R. H. B., Widhyastuti, N., Saskiawan, I., & Safitri, R. M. (2017). Pengaruh Variasi Konsentrasi Inulin Pada Proses Fermentasi Oleh L. Acidophilus, L. Bulgaricus Dan S. Thermophillus - (the Inulin Variation Concentration Effect in Fermentation Using L. Acidophilus, L. Bulgaricus and S. Thermophilus). Biopropal Industri, 8(1), 1–17. https://doi.org/10.36974/jbi.v8i1.1669

Tian, D. D., Xu, X. Q., Peng, Q., Zhang, Y. W., Zhang, P. B., Qiao, Y., & Shi, B. (2020). Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation. Journal of Food Science, 85(8), 2554–2564. https://doi.org/10.1111/1750-3841.15324

Uraipan, S., Brigidi, P., & Hongpattarakere, T. (2014). Antagonistic mechanisms of synbiosis between Lactobacillus plantarum CIF17AN2 and green banana starch in the proximal colon model challenged with Salmonella Typhimurium. Anaerobe, 28, 44–53. https://doi.org/10.1016/j.anaerobe.2014.05.002

Wisnubroto, K. (2021). Memoles Pisang Jadi Andalan Ekspor Nasional. https://indonesia.go.id/kategori/komoditas/3194/memoles-pisang-jadi-andalan-ekspor-nasional

Xu, H.-M., Huang, H.-L., Xu, J., He, J., Zhao, C., Peng, Y., Zhao, H.-L., Huang, W.-Q., Cao, C.-Y., Zhou, Y.-J., Zhou, Y.-L., & Nie, Y.-Q. (2021). Cross-Talk Between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Frontiers in Microbiology, 12, 658292. https://doi.org/10.3389/fmicb.2021.658292

Zahid, H. F., Ranadheera, C. S., Fang, Z., & Ajlouni, S. (2021). Utilization of Mango, Apple and Banana Fruit Peels as Prebiotics and Functional Ingredients. Agriculture, 11(7), 584. https://doi.org/10.3390/agriculture11070584

Załęski, A., Banaszkiewicz, A., & Walkowiak, J. (2013). Butyric acid in irritable bowel syndrome. Przeglad Gastroenterologiczny, 8(6), 350–353. https://doi.org/10.5114/pg.2013.39917

Zarinah, Z., Anis, A. A., Napisah, H., & Shazila, S. (2018). Prebiotic activity score of breadfruit resistant starch (Artocarpus altilis), Breadfruit flour, and inulin during in-vitro fermentation by pure cultures (Lactobacillus plantarum, and Bifidobacterium bifidum). Journal of Agrobiotechnology, 9(1S), 122–131.

Zhao, X., Zhong, X., Liu, X., Wang, X., & Gao, X. (2021). Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota . In Frontiers in Nutrition (Vol. 8). https://www.frontiersin.org/articles/10.3389/fnut.2021.693412


Full Text: PDF

DOI: 10.33751/jf.v13i2.9237 Abstract views : 457 views : 330

Refbacks

  • There are currently no refbacks.