FAKTOR-FAKTOR YANG MEMPENGARUHI KENAIKAN HARGA CRUDE PALM OIL (CPO) NASIONAL MENGGUNAKAN REGRESI LINIER BERGANDA DENGAN PENDEKATAN BAYES

Nurul Hikmah, Ani Andriyati, Isti Kamila

Abstract


This research aims to analyze the factors that influence the increase in national Crude Palm Oil (CPO) prices using the Bayes method and estimating parameters using the Bayesian approach. Estimating parameters in the Bayes method requires an approach with Markov Chain Monte Carlo (MCMC) to generate random samples from the posterior form, the posterior form resulting from multiplying the likelihood function with the conjugate prior. One of the MCMC algorithms used is the Side Gibbs algorithm. Based on the results obtained, it can be concluded that the factors that influence the increase in cooking oil prices are International CPO Prices and Tax Rates. It can be seen from the parameters that do not contain zero values at the 5% and 95% percentiles and from Bayes estimation it is also found that for every increase of 1 The US$ international CPO price at a constant tax rate will cause an increase in the national CPO price of 0.0042 US$. Every 1 US$ increase in the tax rate at a constant international CPO price will cause an increase in the national CPO price of 0.0227 US$.

Keywords


Bayes Method; Chain Monte Carlo; National CPO.

References


Yayasan Lembaga Konsumen Indonesia. 2022. Kenaikan Harga Minyak Goreng. https://ylki.or.id/ [diakses 6 September 2022].

Dinas Perindustrian Perdagangan, Koperasi, Usaha Kecil dan Menengah. 2021. Kenaikan Harga CPO Dunia Picu Kenaikan Harga Minyak Goreng di Indonesia. https://disppkukm.jakarta.go.id/berita [Diakses 6 September 2022].

Bappebti. 2022. Harga Minyak Kedelai. www.bappebti.go.id [diakses 7 September 2022].

Consumer News Business Channel Indonesia. 2022. Kurs Pajak. https://www.cnbcindonesia.com/market-data/kurs-pajak [diakses 7 September 2022].

Prasetyo, R.A., Helma. 2022. Analisis Regresi Linier Berganda Untuk Melihat Faktor yang Berpengaruh Terhadap Kemisninan di Propinsi Jawa Barat. Journal Of Mathematics UNP 7(2), p.62-68.

Sembiring, R.K., 1995. Analisis Regresi, Bandung. ITB

Walpole, RE., Myers, RH., Myers, SL., Ye, KE. 2013. Probability and Statistics for Engineers and Scientists. 9th edition. Harlow: Pearson Education.

Muharisa, C., Yanuar, F., Yozza, H. 2015. Perbandingan Metode Maximum Likelihood dan Metode Bayes dalam Mengestimasi Parameter Model Regresi Linear Berganda Untuk Data Berdistribusi Normal. Jurnal Matematika UNAND. 4(2): 100-107. https://doi.org/10.25077/jmu.4.2.100-107.2015

Damanik. F.A.B. 2020. Analisis Model Regresi Linier Dengan Menggunakan Metode Bayes. Skripsi. Universitas Sumatera Utara, Medan.

Junaidi, J., Fajri, M., Ristawan, Y. 2020. Analisis Sensitivitas Model Regresi Linier Berganda Menggunakan Pendekatan Bayesian (Distribusi Prior Normal). Journal of Data Analysis (JDA) Statistics and Its Applications. 3(1): 1-12.

Ainul, A.M., Junaidi, J., Utami I.T. 2018. Penerapan Model Analisis Regresi Linier Berganda dengan Pendekatan Bayesian pada Data Aset Bank di Indonesia. Jurnal Keteknikan dan Sains (JUTEKS). 1(1): 41-47.

Kementerian Perdagangan Republik Indonesia. 2022. Sistem Pemantauan Pasar dan Kebutuhan Pokok. https://ews.kemendag.go.id/ [diakses 4 September 2022].


Full Text: PDF

DOI: 10.33751/interval.v4i1.10845 Abstract views : 18 views : 24

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.