PENGELOMPOKAN DIVISI KERJA PT. ANUGRAH ANALISIS SEMPURNA BERDASARKAN FAKTOR PSIKOSOSIAL YANG MEMPENGARUHI TINGKAT STRES KARYAWAN MENGGUNAKAN METODE K-MEANS CLUSTERING

Tulus Hastuti Meifera, Ani Andriyati, Amar Sumarsa

Abstract


Based on psychosocial factors, this research optimizes group work divisions at PT Anugrah Analisicepat (AAS) using K-Means Clustering. The Variance Ratio Analysis method determines the best cluster based on the smallest Variance Ratio value among all clusters. This data uses secondary data obtained from PT AAS. The variables used in this research consisted of Role Ambiguity (TP Score), Role Conflict (KP Score), Quantitative Overload (BBKuan Score), Qualitative Overload (BBKual Score), Career Development (PK Score), and Responsibility towards others (TJO Score) is adjusted to the 11 divisions at PT AAS. The optimal grouping result is the formation of two clusters with a variance ratio value of 1.42%. The results of the grouping process using the K-Means Clustering method are that cluster 1 has two members, namely the Microbiology Lab and the Administration Lab. Cluster 2 has nine members: HRDGA, Finance, Agriculture Lab, Enviro Lab, Calibration Lab, Sales & Marketing, Sampling, Marketing Busdev, and QAHSE. Divisions in cluster 1 showed mild scores on all analyzed psychosocial variables. This indicates a mild level of stress compared to divisions in cluster 2. In cluster 2, the variables of role ambiguity, role conflict, quantitative overload, career development, and responsibility for others are all at a moderate stress level.

Keywords


psychosocial factors, K-Means Clustering, Variance Ratio

References


Irwandi, R. D. (2007). Penyakit akibat kerja dan penyakit terkait kerja. Skripsi Fakultas Teknik Universitas Sumatera Utara, Medan.

Firdausyan, N. M., Taqiyuddin, A., Shalahuddin, A., Quarina, Q. (2023). Kajian Vol. 1: Menilik isu dan urgensi kesehatan mental pekerja Indonesia. Bidang Kajian Microeconomics Dashboard, Laboratorium Ilmu Ekonomi FEB UGM. [https://microdashboard.feb.ugm.ac.id/kajian-vol-1-menilik-isu-dan-urgensi-kesehatan-mental-pekerja-indonesia/ ; diakses 28 Juni 2024]

Nugroho, S. (2008). Statistik Multivariat Terapan. Bengkulu: UNIB Press.

Thaher, I.A., Septiariani, A., Puspitasari, N. (2022). Pengelompokan Kualitas Kinerja Pegawai Menggunakan Metode K-Means. Komputika: Jurnal Sistem Komputer, 11(2), 131 – 141. https://doi.org/10.34010/komputika.v11i2.5518

Fahrozi, A. A., Insani, F., Budianita, E., Afrianty, I. (2023). Implementasi Algoritma K-Means dalam menentukan Clustering pada penilaian kepuasan pelanggan di Badan Pelatihan Kesehatan Pekanbaru. Indonesian Journal of Innovation Multidisipliner Research, 1(4), 474–492. https://doi.org/10.31004/ijim.v1i4.53

Faran, J., Kurniawan, A. (2024). Penerapan Algoritma K-Means data mining untuk Clustering kinerja karyawan koperasi. KLIK: Kajian Ilmiah Informatika dan Komputer. 4(4), 2096-2108. https://doi.org/10.30865/klik.v4i4.1728

Johnson, R. A., Wichern, D. W. (2007). Applied Multivariate Analysis. 6th Edition. Upper Saddle River, NJ: Pearson Prentice Hall.

Dinata, R. K., Safwandi, Hasdyna, N., Azizah, N. (2020). Analisis K-Means Clustering pada data sepeda motor. Jurnal Informatika, 5(1), 10–17.

Barakbah, A. R., & Arai, K. (2004). Determining constraints of moving variance to find global optimum and make automatic clustering. Proc. Industrial Electronics Seminar (IES) 12 Oktober 2004, Surabaya, Indonesia. EEPIS, 409-413.


Full Text: PDF

DOI: 10.33751/interval.v4i2.11651 Abstract views : 50 views : 18

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.