ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEMATIAN PASIEN COVID-19 MENGGUNAKAN KLASIFIKASI BERSTRUKTUR POHON BINER DENGAN ALGORITMA QUEST

Siti Mariyam, Yasmin Erika Faridhan, Fitria Virgantari

Abstract


COVID-19 is an infectious disease caused by a type of coronavirus that was only discovered in December 2019. Patients with underlying medical conditions, or comorbidities, have a higher risk of developing severe illness due to COVID-19. The purpose of this study is to classify and analyze the factors which mostly affect the death in COVID-19 patients using QUEST algorithm. The main strengths of QUEST algorithm are unbiased selection of variables and high computational speed.  Data used in this study are primary data of 14 variables on 460 COVID-19 patients taken from Dr. M. Goenawan Partowidigdo Lung Hospital in Cisarua, West Java, from March 2020 to January 2021. Results show that there are three significant factors that affected the death in COVID-19 patients. The first factor is the status of COVID-19 patients. The second and third factors are comorbidities, i.e. hypertension and kidney failure, respectively. The factor which mostly affected the death in COVID-19 patients is patient with probable status, with a mortality rate of 95%. The second most factor affecting the death in COVID-19 is patients with under-surveillance, suspected and confirmed status with kidney failure, where the mortality rate is 60%. The accuracy of the classification tree is 80.6%, which is quite optimal.

Keywords


COVID-19, comorbidities, death, classification, QUEST

References


[WHO] World Health Organization. (2021). Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19 [Diakses 5 April 2022].

[WHO] World Health Organization. (2020). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 [Diakses 13 April 2022].

[CDC] Centers for Disease Control and Prevention. (2022). Underlying medical conditions associated with higher risk for severe COVID-19: Information for healthcare professionals. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html [Diakses 13 April 2022].

Vayssières, M.P., Plant, R.E., Allen-Diaz, B.H. (2000). Classification trees: An alternative non-parametric approach for predicting species distributions. Journal of Vegetation Science. 11: 679-694. https://doi.org/10.2307/3236575

Loh, W.Y. (2014a). Classification and regression tree methods. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat03886

Loh, W.Y. (2014b). Fifty years of classification and regression trees. International Statistical Review. 82 (3): 329-348. https://doi.org/10.1111/insr.12016

Alwi, W., Tahir, N.A. (2015). Metode klasifikasi berstruktur pohon dengan algoritma QUEST. Jurnal MSA. 3 (2): 14-24.

Rizki, V. D., Setyawan, Y. (2018). Penerapan metode Quick, Unbiased, Efficient Statistical Trees (QUEST) untuk menentukan faktor-faktor yang mempengaruhi penyakit diare pada balita di Indonesia. Jurnal Statistika Industri dan Komputasi. 3 (1):1-10. https://doi.org/10.34151/statistika.v3i01.1074

Han, J., Kamber, M., Pei, J. (2011). Data Mining Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers.

Sartono, B. (2015). Pohon klasifikasi - Bagian 1: Gambaran umum dan algoritma dasar yang perlu diketahui. Seri Tulisan Data Mining. http://bagusco.staff.ipb.ac.id/files/2016/05/Pohon-Klasifikasi.pdf [Diakses 13 April 2022].

Misshuari, I.W., Chairunnisah. (2020). Penerapan metode Classification And Regression Trees (CART) untuk menentukan faktor-faktor yang mempengaruhi pembayaran kredit oleh nasabah di PT BPRS Gebu Prima Medan. Karismatika. 6(3): 10-19. https://doi.org/10.24114/jmk.v6i3.22202

Loh, W.Y., Vanichsetakul, N. (1998). Tree-Structured Classification via Generalized Discriminant Analysis. Journal of the American Statistical Association. 83(403): 715-725. https://doi.org/10.1080/01621459.1988.10478652

Rahayu, S., Nugraha, S.M., Manik, C., Handayani, N., Jovina, T., Budiati, N. (2020). COVID-19: The Nightmare or Rainbow. Mata Aksara. Thesis doi: 10.31237/osf.io/tvyuw

Shih, Y. S. 2020. QUEST user manual. Department of Mathematics, National Chung Cheng University, Taiwan.

Johnson, R.A., Wichern, D.W. (2007). Applied Multivariate Statistical Analysis. 6th edition. London: Pearson.


Full Text: PDF

DOI: 10.33751/interval.v2i1.5162 Abstract views : 428 views : 375

Refbacks

  • There are currently no refbacks.