PENERAPAN FUZZY C MEANS PADA NILAI NDVI LANDSAT 8 UNTUK KLASTERISASI KEHIJAUAN KELURAHAN DI KOTA BOGOR

Arif Wicaksono, Revi Hernina

Abstract


This study aims to cluster sub-districts (kelurahan) in Bogor Municipality based on greenness level.  Normalized Difference Vegetation Index (NDVI) values were processed from Landsat 8 OLI recorded on 24 May 2020, downloaded from United States Geological Survey (USGS) website.  NDVI values greater than 0,3 indicate that vegetation pixels are separated from overall raster maps.  These NDVI values over 0,3 were extracted based on each sub-district poligon within Bogor Municipality.  For sub-districts with NDVI > 0,3, the percentage of the area and NDVI mean values were generated using Geographic Information System (GIS).  In order to cluster 68 sub-districts in Bogor Municipality, two variables of NDVI, namely area percentage and mean NDVI values, were processed using the Fuzzy C Means (FCM) method.  Greenness level clustering using the FCM method shows 14 sub-districts in high class, 28 in medium class, and 26 in low cluster class. Overlay analysis among clusters shows two sub-districts (7.69%) in the low cluster class inside the medium class, one sub-district (3.57%) in the medium class within the low class, and one sub-district (7.14%) in the high cluster class inside the medium class. There are two main indications for an overlapping sub-district located in multiple clusters, namely the sub-district that has little different values with neighbouring cluster centres, and the sub-district that has similar different values with two cluster centres.


Keywords


Fuzzy C Means, NDVI, Greenness level, Landsat 8

References


Weier, J., Herring, D. (2000). Measuring Vegetation (NDVI & EVI). https://www.earthobservatory.nasa.gov/features/MeasuringVegetation [Diakses 12 November 2022]

Idrees, M. O., Omar, D. M., Babalola, A., Ahmadu, H. A., Yusuf, A., Lawal, F. O. (2022). Urban land use land cover mapping in tropical savannah using Landsat-8 derived normalized difference vegetation index (NDVI) threshold. South African Journal of Geomatics. 11 (1): 100-112. DOI: 10.4314/sajg.v11i1.8

Ardiansyah, A., Hernina, R., Suseno, W., Zulkarnain, F., Yanidar, R., Rokhmatuloh, R. (2018). Percent of building density (PBD) of urban environment: a multi-index approach based study in DKI Jakarta Province. Indonesian Journal of Geography. 50 (2): 154-161. http://dx.doi.org/10.22146/ijg.36113

Hong, X. (2021). Changes in environmental profiles of cancer villages: A case study of Aizheng Cun in China. The Professional Geographer. 73 (2): 200-212. DOI: 10.1080/00330124.2020.1844570

Moreno, R., Ojeda, N., Azócar, J., Venegas, C., Inostroza, L. (2020). Application of NDVI for identify potentiality of the urban forest for the design of a green corridors system in intermediary cities of Latin America: Case study, Temuco, Chile. Urban Forestry & Urban Greening. 55, 126821: 1-8. DOI: 10.1016/j.ufug.2020.126821

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Springer/Plenum Press: New York. https://doi.org/10.1007/978-1-4757-0450-1

Wicaksono, A. (2022). Public urban park quality assessment using fuzzy C means classification of land surface temperature and social function. In: Yulihastin, E., Abadi, P., Sitompul, P., Harjupa, W. (eds) Proceedings of the International Conference on Radioscience, Equatorial Atmospheric Science and Environment and Humanosphere Science, 2021. Springer Proceedings in Physics, vol. 275. Springer, Singapore. https://doi.org/10.1007/978-981-19-0308-3_42

Imane, B., Virginia, Z. B. R., Abdelmajid, B., Mohammed, R., Mustapha, H., Diomande, B. I. (2021). Extraction of high-precision built-up areas from SENTINEL-2B imagery via multi-index approach and fuzzy C-means algorithm. Intercontinental Geoinformation Days. 2: 249-252.

Mathworks. (2022). Fuzzy C-means clustering. https://www.mathworks.com/help/fuzzy/fuzzy-c-means-clustering.html [Diakses 12 November 2022]

Cebeci, Z. (2017). Partitioning cluster analysis using fuzzy C-means. https://cran.r-project.org/web/packages/ppclust/vignettes/fcm.html [Diakses 12 November 2022]

Choubin, B., Solaimani, K., Habibnejad Roshan, M., Malekian, A. (2017). Watershed classification by remote sensing indices: A fuzzy c-means clustering approach. Journal of Mountain Science. 14 (10): 2053-2063. https://doi.org/10.1007/s11629-017-4357-4

Taufik, A., Ahmad, S. S. S., Khairuddin, N. F. E. (2017). Classification of Landsat 8 satellite data using fuzzy c-means. Proceedings of the 2017 International Conference on Machine Learning and Soft Computing, Ho Chi Minh City, Vietnam, 2017 Jan 13-16 (pp. 58-62). https://doi.org/10.1145/3036290,3036330

Scheffler, D., Frantz, D., Segl, K. (2020). Spectral harmonization and red edge prediction of Landsat-8 to Sentinel-2 using land cover optimized multivariate regressors. Remote Sensing of Environment. 241, 111723: 1-19. https://doi.org/10.1016/j.rse.2020.111723

Zaitunah, A., Ahmad, A. G., Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 OLI in Besitang watershed, Indonesia. IOP Conference Series: Earth and Environmental Science. Friendly City 4 ‘From Research to Implementation for Better Sustainability, Medan, Indonesia, 2017 Oct 11-12. (Vol. 126 (1), 012112). IOP Publishing. DOI 10.1088/1755-1315/126/1/012112

Shi, M., Zhang, L., Sun, W., Song, X. (2019). A fuzzy c-means algorithm guided by attribute correlations and its application in the big data analysis of tunnel boring machine. Knowledge-Based Systems. 182, 104859: 1-14. https://doi.org/10.1016/j.knosys.2019.07.030


Full Text: PDF

DOI: 10.33751/interval.v2i2.6514 Abstract views : 211 views : 138

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.