Dewi Nurdiyanti, Anna Permanasari, Sri Mulyani, Hernani Hernani


Keterampilan berargumentasi adalah keterampilan yang harus dimiliki oleh mahasiswa untuk mendukung keterampilan berpikir kritis yang merupakan salah satu keterampilan abad 21. Tujuan penelitian ini adalah untuk meningkatkan keterampilan berargumentasi mahasiswa calon guru kimia pada materi elektrokimia melalui perkuliahan kimia sekolah menggunakan pendekatan writing to teach (WtT) yang dimodifikasi. Penelitian melibatkan 20 orang mahasiswa calon guru kimia semester 5. Data keterampilan berargumentasi diperoleh melalui tes keterampilan berargumentasi sebelum dan sesudah pembelajaran. Data respon mahasiswa terhadap penggunaan pendekatan WtT yang dimodifikasi diperoleh melalui wawancara. Data dianalisis menggunakan uji N-gain untuk menilhat peningkatan keterampilan berargumentasi dan uji t untuk melihat perbedaan keterampilan berargumentasi. Hasil penelitian menunjukkan bahwa keterampilan berargumentasi mahasiswa meningkat dan mahasiswa menyatakan bahwa kegiatan-kegiatan dalam pendekatan WtT yang dimodifikasi dapat membantu meningkatkan keterampilan berargumentasi.


Keterampilan berargumentasi, writing to teach, elektrokimia.


Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Journal Learning and Instruction, (16), 183–198.

Bricker, L. & Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science education. Science Education, 92(3), 473–498.

Cross, D.; Taasoobshirazi, G.; Hendricks, S; and Hickey, D.T. (2008). Argumentation: a trategy for improving achivement and revealing scientific identities. International Journal of Science Education, 30 (6). DOI: 10.1080/09500690701411567

Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84 (3), 287-312.. DOI: 10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A

Erduran, S., & Jimenez-Aleixandre, M. P. (2008). Argumentation in science education. Florida State University-USA: Springer.

Erika, F., & Prahani, B. K. (2017). Innovative chemistry learning model to improve argumentation skills and self-efficacy. IOSR Journal of Research & Method in education, 7 (11), 62-68. DOI: 10.9790/7388-0701026268

Eskin, H., & Bekirogul, F. O. (2013). Argumentation as strategy for conceptual learning of dynamics. Res. Sci. Edu.Springer. DOI: 10.1007/s1165-012-93339-5

Hand, B., & Choi, A. (2010). Sequencing embedded multimodal representation in constraction argumen in organoc chemistry laboratory classes. Research in Science Teaching, 46 (3), 225-247. DOI: 10.1002/tea.20282

Hong, L. Y., & Talib, C. A. (2018). Scientific argumentation in chemistry education: implication and suggestions. Asian Social ScienceI, 14 (11),14-29.

Hubber P Tytler R and Haslam F 2010 Teaching and learning about force with a representational focus: Pedagogy and teacher change Journal Research in Science Education 40 1 5–28

Jaber, L. Z., & Jaoude, B. S. (2012). A macro-micro-symbolic teaching to promote relational understanding of chemical reaction. International Journal Science Education, 34 (7), 973-998.

Jimenez-Aleixandre, M.P. (2008). “Designing argumentation learning environments”. In Argumentation in science education: Prespective from classroom-based research, edited by S. Erduran and M. P. Jimenez-Aleixandre, 3-27. Netherlands: Springer.

Jimenez-Alexandre, M. P., & Puig, B. (2007). Argumentation in Science Education Prespectives from Classroom-Based Research. Chapter 1. Argumentation in Science Education: An Overview. Springer Netherlands. DOI: 10. 1007/978-1-4020-6670-2.

McNeill, K.L., Lizotte, D.J., Krajcik, J., & Marx, R.W. (2006). Supporting students'

construction of scientific explanations by fading scaffolds in instructional materials.

Journal of the Learning Sciences, 15(2), 153-191.

Meij J Van der and Jong T de 2006 Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment Journal Learning and Instruction 16 3 199-212

Namdar, B., dan Shen, J. (2016). Intersection of argumentation and the use of multiple representation in contex of socioscientific issues. International Journal of Science Education. DOI: 10.1080/09500693.2016.1183265

Osborne, J. F., Erduran, S., & Simon, S. (2004). Enhancing the quality of argument in school science. Journal of Research in Science Teaching, 41, 994-1020.

Pallant, A., & Lee, H. S. (2014) Constructing scientific arguments using evidence from dynamic computional climate models. Journal of Science Education and Thecnology. DOI:10.1007/s110956-014-9499-3

Sampson, V., & Gerbino, F. (2010). ”Two instructional models that teachers can use to promote anf support scientific argumentation in the biology classroom. The American Biology Teacher. 72 (7), 247-431.

Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345 – 372.

Shehab, S. S., & BouJaoude, S. (2016). Analysis of chemical representation in secondary lebanes chemistry textbook. International Journal of Science and Mathematics Education, 15 (5), 797-816.

Siegel, H. (1995).Why should educator care about argumentation?. Informal Logic, 17 (2), 159-176.

Suminar, L. (2016). Penerapan model argument-based inquiry menggunakan pendekatan multi representasi untuk meningkatkan kemampuan translasi antar modus representasi dan kemampuan berargumentasi siswa SMA pada materi fluida statis. (Thesis). Sekolah Pascasarjana, Universitas Pendidikan Indonesia. Bandung.

Suthers, D., Toth, E. E., & Weiner, A. (1997). An integrated approach to implementing collaborative inquiry in the clasroom, 2nd International Conference on Computer Supported Collaborative Learning (pp. 272 – 279). Toronto, Ontario, Canada: University of Toronto.

Suyono S and Meristin A 2018 The effect of multiple representation-baased learning (MLR) to increase students’ understanding of chemical bonding concepts

Talanquer, V. (2006). “Exploring Dominant Types of Explanations Built by General chemistry Students”. Int. J. Sci. Educ., 32 (18), 2393–2412.

Toulmin, S. (1958). The Use of Argument. Cambridge: Cambridge University Press.

Treagust, D., Chittlebrough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representation in chemical explanation. International Journal of Science Education, 25 911), 1353-1368.

Tsui, C-Y., & Treagust, D. (2003). Genetic reasoning with multiple representation external representations. Research in Science Education, 33 (1), 111-135.

Vazquez, A.V.; McLoughlin, K.; Sabbagh, M.; Runkle, A. C.; Simon, J.; Coppala, B. P; and Pazicni, S. (2012). Eriting-to-teach: a new pedagogical approach to elicit explanative writing for undergraduate chemical students. Journal of Chemical Education, 89 (2). DOI: 10.1021/ed200410k

Venville, G.J.; and Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informing reasoning, and coneptual understanding of science. Journal of Research Science and Teaching, 47 (8). DOI: 10.1002/tea.20358

Waldrip, (Personal comunication, 12 Agustus 2015)

Zembal-Saul, C., Munford, D., Crawford, B., Friedrichsen, P., & Land, S. (2002). Scaffolding preservice science teachers’ evidence-based arguments during an investigation of natural selection. Research in Science Education, 32(4), 437 – 463.

Zohar, A. & Nemet, F. (2002). “Fostering student’s knowledge and argumentation skills trough dilemmas in human genetics”. Journal of Research In Science Teaching, 39 (1), 35-62.

Full Text: PDF

DOI: 10.33751/jsep.v3i2.1862


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.